期刊文献+

NiCoFe LDH阳极析氧催化剂的制备及性能研究 被引量:3

PREPARATION AND PROPERTIES OF Ni Co Fe LDH ANODIC OXYGEN EVOLUTION CATALYST
下载PDF
导出
摘要 通过水热法高效地制备出三元过渡金属NiCoFe层状双氢氧化物(LDH)超薄纳米片。作为OER催化剂,NiCoFe LDH/NF在1.0 mol/L KOH溶液中表现出卓越的活性和良好的稳定性,当电流密度为120 mA/cm^(2)时,过电位仅需200 mV,Tafel斜率为82 mV/(°),相较于常规水热法制备的NiCoFe LDH,合成温度低、时间短,且性能非常优异。 In this work,ternary transition metal NiCoFe layered double hydroxide(LDH)ultrathin nanosheets were efficiently prepared by hydrothermal method.As an OER catalyst,NiCoFe LDH/NF exhibits excellent OER activity and good stability in 1.0 mol/L KOH solution.When the current density is 120 mA/cm^(2),the overpotential is only 200 mV and the Tafel slope is 82 mV/(°).Compared with the conventional hydrothermal method,the NiCoFe LDH/NF synthesized in this paper has the advantages of low synthesis temperature,short synthesis time and excellent performance.
作者 郭文君 李丹丹 王强 魏聪聪 钟达忠 赵强 Guo Wenjun;Li Dandan;Wang Qiang;Wei Congcong;Zhong Dazhong;Zhao Qiang(College of Chemistry and Chemical Engineering,Taiyuan University of Technology,Taiyuan 030024,China;Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization,Taiyuan 030024,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2021年第5期46-53,共8页 Acta Energiae Solaris Sinica
基金 国家自然科学基金(21878202,21975175) 山西省回国留学人员科研资助项目(2017-041) 山西省自然科学基金(201801D121052)。
关键词 氢能 能量壁垒 过渡金属 催化剂 NiCoFe hydrogen energy energy barrier transition metal catalyst NiCoFe
  • 相关文献

参考文献4

二级参考文献29

  • 1顾钢.国外氢能技术路线图及对我国的启示[J].国际技术经济研究,2004,7(4):34-37. 被引量:25
  • 2BOGDANOVIC B, SCHWICKARDI M. Ti-doped alkali metal aluminum hydrides as potential novel reversible hydrogen storage materials[J]. Journal of Alloys and Compounds, 1997, 253: 1-9.
  • 3BALEMA V P, DENNIS K W, PECHARSKY V K. Rapid soid-state transformation of tetrahedral [AlH4] (^-) into octahedral[AlH6](^3-) in lithium aluminohydride [J]. Chemical Communications, 2000, 17:1 655-1 666.
  • 4CHEN P, XIONG Z, LUO J Z. Interaction of hydrogen with metal nitrides and imides [J].Nature,2002,420:302-304.
  • 5SIMONYAN V V, JOHNSON J K. Hydrogen storage in carbon nanotubes and graphitic nanofibers [J]. Journal of Alloys and Compounds, 2002, 258: 330-332.
  • 6SIMONYAN V V, JOHNSON J K. Hydrogen storage in carbon nanotubes and graphitic nanofibers [J]. Journal of Alloys and Compounds, 2002, 258: 659-665.
  • 7NIJKAMP M G, RAAYMAKERS J E, DILLEN A J V. Hydrogen storage using physisorption- materials demands [J]. Applied Physics, 2001, A 72: 619-623.
  • 8ZUTTEL A, ORIMO S. Hydrogen in nanostructured, carbon-related, and metallic materials[J]. MRS Bulletin, 2002, 27:705-711.
  • 9GEORGE R, CASANOVA A C, VEYO S. Status of siemens westinghouse SOFC program[A].Extended Abstracts of the 2002 Fuel Cell Seminar [C]. Washington USA: Courtesy Associates Inc,2002. 977-979.
  • 10GASTEIGER H A, MATHIAS M F. Fundamental research and development challenges in polymer electrolyte fuel cell technology [A]. MURTHY M, FULLER T F, ZEE VAN J W, et al. Proceedings of the Proton-Conducting Membrane Fuel Cells Ⅲ Symposium [C]. Salt Lake City: The Electrochemical Society,2002.A 726.

共引文献122

同被引文献30

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部