期刊文献+

基于时间卷积网络的废钢价格预测模型

Prediction Model on Steel Scrap Prices Based on Temporal Convolution Networks
下载PDF
导出
摘要 针对废钢价格预测问题,引入了深度学习领域的时间卷积网络构建模型。通过数据预处理、特征工程、构建时间卷积层、构建深度神经网络等步骤,拟合了一个根据历史一个月的废钢价格数据推测未来一天废钢价格指数的函数。通过近期四个月的实际数据验证,在预测误差绝对值和趋势预测准确度两个指标上,均优于传统时序以及神经网络模型。深度学习在废钢价格预测方面的研究也为其应用于行业其他时序相关数据的分析和建模提供了参考方向。 Application of temporal convolution networks in the deep learning field aiming at prediction of steel scrap prices is studied in this research.Through processes of data preprocessing,feature engineering,building-up of temporal convolution layers and construction of deep neural networks,a model is designed to predict the steel scrap price in the next day according to scrap price data of one month in history.Results of a 4-month experiment prove the validity of the model,outperforming most of traditional models for financial time series prediction with less absolute prediction error and better trend prediction accuracy.The research of deep learning in scrap price prediction also provides a reference direction for its application in the analysis and modeling of other time-series related data in the industry.
作者 张洪 Zhang Hong(Industrial Internet Research Institute of Shanghai Baosight Software Co., Ltd./ Big Data Center, Shanghai 201203)
出处 《武汉工程职业技术学院学报》 2021年第2期26-30,共5页 Journal of Wuhan Engineering Institute
关键词 废钢 价格预测 深度学习 时间卷积网络 卷积神经网络 循环神经网络 steel scrap price prediction deep learning temporal convolution networks convolution networks recurrent neural networks
  • 相关文献

参考文献6

二级参考文献43

  • 1崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 2柳进,于继来,唐降龙.基于数据挖掘的电网高峰负荷预测系统[J].计算机工程,2005,31(1):9-11. 被引量:3
  • 3张旭涛,贺国光,卢宇.一种在线实时快速地判定交通流混沌的组合算法[J].系统工程,2005,23(9):42-45. 被引量:8
  • 4贾丽会,张修如.BP算法分析与改进[J].计算机技术与发展,2006,16(10):101-103. 被引量:48
  • 5美.弗朗西斯,X.迪博尔德.经济预测[M].北京:中信出版社,2003.
  • 6Shi Shanming,Xu Li D,Liu Bao.Application of artificial neural networks to the nonliner combination of forecasts[J].Expert Systems,1996,13(3):195-201.
  • 7Newland D E.Harmonic wavelet analysis[J].Proc R Soc Land A, 1993,443(1917):203-225.
  • 8Newland D E.Wavelet analysis of vibration,Part I:theory[J].Tran ASME J Vibration & Acoustic, 1994,116(44) :409-416.
  • 9Kim B J, Choe G H.High precision numerical estimation of the largest Lyapunov exponent[J].Communications in Nonlinear Sci- ence and Numerical Simulation,2010,15(15) : 1378-1384.
  • 10Bakker R, Schouten J C,Giles C L,et al.Learning chaotic attrac- tors by neural networks[J].Neural Computation, 2000, 12 (10) : 2355-2383.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部