期刊文献+

氮掺杂炭锚定二氧化钛的制备及电催化氧还原性能

Preparation of nitrogen-doped carbon anchoring titanium dioxide and its electrocatalytic oxygen reduction performance
下载PDF
导出
摘要 目前人们正在积极寻找非贵金属催化剂以取代昂贵的铂系氧还原反应催化剂。本文研究一种非贵金属催化剂TiO_(2)分散在N掺杂碳(TiO_(2)/N—C)上,其在碱性溶液中的ORR活性与20%(wt)Pt/C相当,其中,在0.1 mol/L KOH溶液中,TiO_(2)/N-C表现出0.96 VRHE的起始电位和0.80 VRHE的半波电位;密度泛函理论计算表明,电子从还原的TiO_(2)转移到N-C可以大大增强石墨化N掺杂剂附近的ORR活性;TiO_(2)/N-C在反应条件下也表现出良好的稳定性和对甲醇的耐受性。这为合理设计廉价高活性ORR催化剂提供了一种新方法。 Currently,people are actively looking for non-precious metal catalysts to replace expensive platinum-based oxygen reduction catalysts.In this study,we report a non-noble metal catalyst,TiO_(2)dispersed on N-doped carbon(TiO_(2)/N-C),which have excellent ORR activity comparable to that of the 20 wt%Pt/C in alkaline solution.Specifically,TiO_(2)/N-C exhibit onset potential of 0.96 VRHE and half-wave potential of 0.80 VRHE in 0.1 M KOH solution.Density functional theory calculations show that electron transfer from the reduced TiO_(2)to the N-C can greatly enhance the ORR activity near the graphitic N dopant.Moreover,TiO_(2)/N-C also displayed great stability under reaction conditions and resistance to methanol poisoning.This provides a new method for the rational design of inexpensive and highly active ORR catalysts.
作者 袁会芳 王晨旭 彭邦华 王刚 段志耀 代斌 YUAN Huifang;WANG Chenxu;PENG Banghua;WANG Gang;DUAN Zhiyao;DAI Bin(School of Chemistry and Chemical Engineering,Shihezi University/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan,Shihezi,Xinjiang 832003,China;Department of Chemistry,University of Texas at Austin,Austin,Texas 78712-0165,United States)
出处 《石河子大学学报(自然科学版)》 CAS 北大核心 2021年第2期133-140,共8页 Journal of Shihezi University(Natural Science)
基金 兵团科技创新人才计划(2019CB025) 国家自然科学基金(21865025)
关键词 金属有机骨架 二氧化钛 氧还原反应 电化学催化剂 metal organic frameworks titanium dioxide oxygen reduction reaction electrochemical catalysts
  • 相关文献

参考文献4

二级参考文献42

  • 1Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306 : 666-669.
  • 2Novoselov K S, Jiang D, Schedin F, et al. Two-dimensional atomic crystals [J]. Proceedings of the National Academy of Sciences, 2005, 102 : 10451-10453.
  • 3Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene[ J]. Science, 2006, 312 : 1191-1196.
  • 4Nakada K, Fujita M, Dresselhaus G, et al. Edge state in graphene ribbons : Nanometer size effect and edge shape dependence [J]. PhysRevB, 1996, 54: 17954-17961.
  • 5Novoselov K S, Geim A K, Morozov S, et al. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438 : 197-200.
  • 6Zhang Y, Yan-Wen T, Stormer H Let al. Experimental observation of the quantum Hall effect and Berry's phase in graphene [J]. Nature, 2005, 438:201 - 204.
  • 7He H, Klinowski J, Forster M, et al. A new structure model for graphite oxide[J].Chem Phys Lett, 1998, 287: 53-56.
  • 8Stankovich S, Dikin D A, Dommett G H B, et al. Graphenebased composite materials[J].Nature, 2006, 442: 282-286.
  • 9Zhao W, Wang H, Tang H et al. Facile preparation of epoxybased composite with oriented graphite nanosheets[J].Polymer, 2006, 47: 8401-8405.
  • 10Berger C, Song Z, Li T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nano- electronics[J].J Phys Chem ,2004, 108: 19912-19916.

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部