期刊文献+

基于声音信号的机械设备故障诊断 被引量:4

下载PDF
导出
摘要 如何在故障发生前对故障进行预测,对即将出现问题零部件进行提前维修和更换,这对于提高工业设备的使用寿命,避免设备突然发生故障对整个工业生产造成严重影响具有十分重要的意义。本文将利用傅立叶算法采集故障噪声信号特征,将其分为三种特征进行提取,并对采集取样的声音信号基于傅里叶算法进行数据分析。将优化的特征信息输入到卷积神经网络模型中进行故障识别和故障类型判断。
作者 郑思宇
出处 《内燃机与配件》 2021年第13期129-132,共4页 Internal Combustion Engine & Parts
  • 相关文献

参考文献3

二级参考文献20

  • 1孙来军,胡晓光,纪延超.基于支持向量机的高压断路器机械状态分类[J].电工技术学报,2006,21(8):53-58. 被引量:38
  • 2GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 3HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 4KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 5BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 6WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 7BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 8ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 9VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.
  • 10JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementingcondition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510.

共引文献349

同被引文献24

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部