期刊文献+

乳制品中肠炎沙门氏菌Salmonella enteritidis(CMCC 50041)生长预测模型的建立 被引量:4

Establishment of Predictive Model for Salmonella Enteritidis (CMCC50041) Growth in Different Dairy Products
原文传递
导出
摘要 为研究乳制品中肠炎沙门氏菌Salmonella enteritidis(CMCC 50041)的生长规律,选用3种乳制品(液体乳、奶油、乳酪)作为实验对象,比较了4、8、15、25、35 ℃条件下肠炎沙门氏菌的生长数据。利用5种常用的一级模型(Gompertz模型、Baranyi模型、Logistic模型、Richards模型和MMF模型)对实验数据进行拟合,通过比较相关系数和均方误差,确定最适一级模型为Gompertz模型。用平方根模型方程描述温度、pH值和水分活度与比生长速率和延滞期的关系,得到肠炎沙门氏菌生长二级模型,并通过偏差值Bf和准确值Af进行了外部验证。结果表明,构建的一级和二级生长模型能够较好地描述乳制品中肠炎沙门氏菌的生长动态,从而为有效监控乳制品中肠炎沙门氏菌污染提供一定的参考。 In order to predict the growth of Salmonella enteritidis (CMCC 50041) in the dairy,three kinds of dairy products (liquid milk,butter and cheese) were inoculated with Salmonella enteritidis,transferred for storage at 4,8,15,25,35 ℃.Five common primary models (Gompertz,Baranyi,Logistic,Richards and MMF) were applied to fit the growth curve for Salmonella enteritidis.The correlation coefficient and standard deviation were compared to identify Gompertz model as the best fitting model.Extended square-root models concerning growth kinetic parameters (maximum specific growth rate and lag period) of Salmonella enteritidis as a function of temperature,pH,water activity (a_(w)) and were developed to obtain the secondary growth model of Salmonella enteritidis.The bias value (Bf) and accuracy (Af) were calculated to evaluate the established models.The results showed that the secondary models could describe the growth of Salmonella enteritidis in these different dairy products,thus providing some reference for the effective monitoring of Salmonella enteritidis contamination in dairy products.
作者 刘敏 张群 曹丙蕾 李国鹏 LIU Min;ZHANG Qun;CAO Binglei;LI Guopeng(Laiwu Customs of the People’s Republic of China,Ji’nan 271100,China;Technology Center of Jinan Customs District,Ji’nan 250014,China)
出处 《食品科技》 CAS 北大核心 2021年第5期290-295,共6页 Food Science and Technology
基金 2019年度济南海关科研项目(2019JK007)。
关键词 乳制品 肠炎沙门氏菌 生长模型 dairy products Salmonella enteritidis growth model
  • 相关文献

参考文献5

二级参考文献103

  • 1范江平,王明珠,毛华明.原料奶需检测的几项微生物指标[J].中国乳业,2003(12):36-37. 被引量:20
  • 2张志胜,陈莉娜,任旭兵,刘媛.手工挤奶方式对原料乳细菌总数的影响及分析[J].中国乳业,2004(11):38-40. 被引量:4
  • 3Peter Best,吕玲.控制运输过程中的沙门氏菌污染[J].中国家禽,2007,29(4):30-30. 被引量:1
  • 4Schaffner DW,Labuza PL.Predictive microbiology:where are we,and where are we going?[J].Food Technology,1997,51 (4):95-99
  • 5Yu C,Davidson V J,Yang SX.A neural network approach to predict survival/death and growth/no-growth interfaces for Escherichia coil 0157:H7[J].Food Microbiology,2006,23:552-560
  • 6Isabelle L,Andre L.Quantibative prediction of microbial behaviour during food processing using an integrated modeling approach:a review[J].International Journal of Refrigeration,2006,29:968-984
  • 7Whiting RE,Buchanan RL.Microbial modeling.A scientific status summary by the institute of food technologists s expert panel on food safety and nutrition[J].Food Technology,1994,48(6):113-120
  • 8Mafart P.Food engineering and predictive microbiology:on the necessity to combine biological and physical kinetics[J].International Journal of Food Microbiology,2005,100:239- 251
  • 9Membre JM,Lambert RJW.Application of predictive modelling techniques in industry:From food design up to risk assessment[J].International Journal of Food Microbiology,2008,7:6
  • 10Kajak K,Kolozyn-Krajewska D.Construction of predictive models of growth of microorganisms in salted and cured meat products[J].Innovative Food Science and Emerging Technologies,2006,7:152-159

共引文献74

同被引文献60

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部