期刊文献+

布谷鸟马尔科夫链蒙特卡洛混合高斯地质统计学随机反演 被引量:5

Mixed Gaussian stochastic inversion based on hybrid of cuckoo algorithm and Markov chain Monte Carlo
下载PDF
导出
摘要 地质统计学随机反演可以获得比常规反演更高分辨率的结果,目前已成为储层高分辨率预测的主流方法.地下不同岩相储层参数存在明显差异,本文在地质统计学反演框架下构建了岩相和储层参数同步反演目标函数,实现不同岩相条件下储层参数分布精细描述.在求解该高维数据多参数同步反演问题时,本文将可以动态调节搜索步长的布谷鸟算法与马尔科夫链蒙特卡洛方法融合,采用多条马尔科夫链进行Levy飞行产生新解的策略扩大解的空间范围,通过适应度最佳选择输出最优解实现全局优化迭代,有效提升了反演方法的稳定性和全局最优性,避免了传统马尔科夫链蒙特卡洛方法因抽样随机性而陷入局部最优的问题.通过含噪声模型和实际数据分析验证了本文方法的有效性. Geostatistical stochastic inversion can obtain higher resolution results than conventional inversion.Considering that there are obvious differences in the parameters of different lithofacies in the underground,in this paper,we propose a new method to inverse the petrographic proportion,lithofacies classification and elastic parameters simultaneously,achieving a detailed description of the reservoir parameter distribution under different lithofacies.When considering the multi-parameter simultaneous inversion problem of high-dimensional data,the paper realizes the fusion of the cuckoo algorithm and the Markov chain Monte Carlo approach to solve this inversion problem.Our new algorithm uses multiple Markov chains to carry out Levy flight to generate a new solution strategy to expand the solution spatial range.Selecting the optimal solution through the best fitness to achieve the global optimization iteration.Through algorithm integration,the stability and global optimality of the inversion method are effectively improved.The effectiveness of the new method is verified by synthetic data and the field data.
作者 王峣钧 邢凯 厍斌 刘宇 陈挺 胡光岷 吴秋波 WANG YaoJun;XING Kai;SHE Bin;LIU Yu;CHEN Ting;HU GuangMin;WU QiuBo(School of Resources and Environment,University of Electronic Science and Technology of China,Chengdu 611731,China;Qiushi College,Taiyuan University of Technology,Taiyuan 030024,China;Geophysical Exploration Technology R&D Center,BGP,Hebei Zhuozhou 072751,China)
出处 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2021年第7期2540-2553,共14页 Chinese Journal of Geophysics
基金 国家自然科学基金(41804126) 国家重大专项(2017ZX05018001-006)联合资助.
关键词 随机反演 混合高斯 MCMC 布谷鸟算法 全局优化 Geostatistical stochastic inversion Mixed Gaussian model MCMC Cuckoo algorithm Global optimization
  • 相关文献

参考文献1

二级参考文献19

共引文献55

同被引文献75

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部