期刊文献+

基于广义主成分分析的图像重建

Image reconstruction based on tensorial principal component analysis
下载PDF
导出
摘要 主成分分析(PCA)在图像识别及高维数据降维中有着普遍的应用。为提升基于主成分分析的图像重建性能,在经典PCA算法的基础上提出了广义主成分分析(TPCA),并利用该算法进行图像重建。该算法利用图像像素的空间邻域构成固定尺寸的数组并将其作为广义标量进行代数运算,可以方便有效地描述各像素的空间约束,从而提升图像的重建效果,同时也为其他图像分析算法的改进和升级提供了思路。实验分别将经典PCA算法与TPCA算法运用于公有数据进行图像重建,并对重建质量进行定量分析,结果表明运用TPCA算法的图像重建效果明显优于经典PCA算法。 Principal component analysis(PCA)is widely used in image recognition and dimensionality reduction of high-dimensional data.To improve the performance of PCA for image reconstruction,a generalized principal component analysis algorithm,called tensorial principal component analysis(TPCA),is proposed based on the classical PCA.The TPCA algorithm employs the spatial neighbors of each pixel to form a fixed-sized numerical array which is defined as the corresponding t-scalar for algebraic calculation.Therefore,the TPCA algorithm can effectively characterize the spatial constraints of each pixel and improve the performance of image reconstruction.The approach employed in TPCA also provides a novel perspective for generalizing and improving other image analysis algorithms.In our experiments,PCA and TPCA are respectively applied to public image datasets for image reconstruction.Quantitative performance comparisons for image reconstructions show that TPCA compares favorably to classical PCA in terms of reconstruction quality.
作者 张雪纯 廖亮 魏平俊 ZHANG Xuechun;LIAO Liang;WEI Pingjun(College of Electronics and Information, Zhongyuan University of Technology, Zhengzhou 450007, China)
出处 《河南工程学院学报(自然科学版)》 2021年第2期74-80,共7页 Journal of Henan University of Engineering:Natural Science Edition
基金 国家自然科学基金项目(U1404607) 科技部/国家外专局高端外国专家项目(GDW20186300351)。
关键词 主成分分析 图像重建 广义主成分分析 广义标量 principal component analysis image reconstruction tensorial principal component analysis t-scalars
  • 相关文献

参考文献2

二级参考文献16

  • 1福永圭之介著 陶笃纯译.《统计模式识别导论》[M].科学出版社出版,1978年..
  • 2K. Fukunaga. "Introduction to Statistical Pattern Recognition" [M ], 2nd Edition, Academic Press, Inc. ,Boston, 1990.
  • 3Richard O. Duda Peter E. Hart David G. Stork. PatternClassification[M] 2nd Edition New York, NY: WileyInterscience, 2000.
  • 4Kari Torkkoa. Discriminative Feature for Text Document Classification[M]. Motorola Labs.
  • 5边肇祺 张学工.《模式识别》(第2版)[M].北京:清华大学出版社,2002年..
  • 6Xuan Guorong. Chai Peiqi, Wu Minhui. Bhattacharyya Distance Feature Selection[J]. 13th International Conference on Pattern Recognition, Aug. 25- 29,1996, Vienna, Austria.
  • 7Aleix M. Martinez, Avinash C. Kak. PCA versus LDA [J],IEEE Transaction on Pattern Analysis and Machine Inteligence, Vol23, No22, pp228- 233,2001.
  • 8Yousef A O,Cheriet M. Databases for recognition of handwritten arabic cheques[J]. Pattern Recognition, 2003 (36): 111-121.
  • 9Juan A, Vidal E. On the use of Bernoulli mixture models for text classification[J]. Pattern Recognition,2002,35 ( 12): 2705-2710.
  • 10Hu J , Yen H. Structural primitive extraction and coding for handwritten numeral recognition[J]. Pattern Recognition, 1998,31 (5):493-509.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部