期刊文献+

Distance Effect of Ni-Pt Dual Sites for Active Hydrogen Transfer in Tandem Reaction 被引量:5

原文传递
导出
摘要 Unveiling the distance effect between different sites in multifunctional catalysts remains a major challenge.Herein,we investigate the distance effect by constructing a dual-site distance-controlled tandem catalyst with a five-layered TiO2/Pt/TiO2/Ni/TiO2 tubular nanostructure by template-assisted atomic layer deposition.In this catalyst,the Ni and Pt sites are separated by a porous TiO2 interlayer,and the distance between them can be precisely controlled on the subnanometer scale by altering the thickness of the interlayer,while the inner and outer porous TiO2 layers are designed for structural stability.The catalyst exhibits superior performance for the tandem hydrazine hydrate decomposition to hydrogen and subsequent nitrobenzene hydrogenation when the Ni and Pt site distance is on the subnanometer level.The performance increases with the decrease of the distance and is better than the catalyst without the TiO2 interlayer.Isotopic and kinetic experiments reveal that the distance effect controls the transfer of active hydrogen,which is the rate-determining step of the tandem reaction in a water solvent.Reduced Ti species with oxygen vacancies on the TiO2 interlayer provide the active sites for hydrogen transfer with-Ti-OH surface intermediates via the continuous chemisorption/desorption of water.A smaller distance induces the generation of more active sites for hydrogen transfer and thus higher efficiency in the synergy of Ni and Pt sites.Our work provides new insight for the distance effect of different active sites and the mechanism of intermediate transfer in tandem reactions.
出处 《The Innovation》 2020年第2期29-35,28,共8页 创新(英文)
基金 We acknowledge the characterization support from the Shanghai Synchrotron Radiation Facility,Shanghai Institute of Applied Physics,Shanghai,People's Republic of China.This work was supported by National Natural Science Foundation of China(21872160,21673269,and U1832208) National Science Fund for Distinguished Young Scholars(21825204) the National Key R&D Program of China(2017YFA0700101 and 2018YFB1501602) the Youth Innovation Promotion Association CAS(2017204) Natural Science Foundation of Shanxi Province(201901D211591)。
  • 相关文献

参考文献2

共引文献13

同被引文献20

引证文献5

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部