摘要
分析了模糊关系、模糊关系合成和模糊推理,为便于讨论模糊关系的合成,定义了模糊关系主和从的概念;基于模糊推理的综合评价,将模糊集合看成是模糊关系,将模糊蕴含关系作为模糊单因素评价矩阵并输入模糊推理;最后,通过教师年终考核实例,提出了利用不同职称相对隶属度求得模糊蕴含矩阵的方法。该方法为模糊综合评价的应用提供了参考。
In the paper,fuzzy relations,synthesis of fuzzy relations and fuzzy inference are proposed.To be easy to interpret the principle of synthesis of fuzzy relations,concepts of master and slave of fuzzy relation are defined.When discussing the fuzzy comprehensive evaluation based fuzzy inference,fuzzy set is considered as fuzzy relation,and fuzzy implication is considered as fuzzy evaluation matrix of single factor and input in fuzzy inference.Finally,through the practical instance of teacher′s year-end evaluation,aiming at teachers of different professional titles,the simple and feasible method of obtaining relative degree of membership is presented to solve fuzzy implication matrix.The views and methods can be used as reference for application of fuzzy comprehensive evaluation.
作者
孙梅霞
王吉华
郭栋
曲金玉
SUN Meixia;WANG Jihua;GUO Dong;QU Jinyu(Editorial Department(Natural Science Edition),Shandong University of Technology,Zibo 255049,China;School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo255049,China)
出处
《山东理工大学学报(自然科学版)》
CAS
2021年第6期27-30,共4页
Journal of Shandong University of Technology:Natural Science Edition
基金
国家自然科学基金项目(51508315)
山东省重点研发计划项目(2017GGX50103)
山东理工大学教研项目(4003/118248)。
关键词
模糊综合评价
模糊关系合成
模糊推理
模糊蕴含
相对隶属度
fuzzy comprehensive evaluation
synthesis of fuzzy relations
fuzzy inference
fuzzy implication
relative degree of membership