期刊文献+

基于NGSIM数据的汽车变道越线时间预测

Prediction of vehicle lane change crossing time based on NGSIM data
下载PDF
导出
摘要 为预测汽车变道越线时间,基于NGSIM数据提取汽车的真实越线时间,选定变道车和其周围汽车的行驶状态参数作为潜在影响因素。随机选取60组训练数据,先利用Spss软件逐步回归法对越线时间与自变量进行多元线性回归拟合,再通过Matlab编程对越线时间进行多元非线性回归拟合,分别建立多元线性和非线性回归越线时间预测模型;对模型进行训练后得到各模型的系数,分别测试除训练数据外的30组数据并对比拟合效果。结果表明,所建立的多元非线性回归模型能够有效预测汽车变道越线时间,预测有效率达到83%。 In order to predict the lane change crossing time of the vehicle,the real lane crossing time of the vehicle was extracted from NGSIM data,and the driving state parameters of the lane change vehicle and its surrounding vehicles were selected as the potential influencing factors.Randomly selected 60 set of training data are used to establish multiple linear regression fitting crossing time with the independent variables in Spss software,and through Matlab programming establish multivariate nonlinear regression fitting,respectively the coefficient of each model is obtained after training,which is used to test additional 30 data sets,the established multivariate nonlinear regression model can effectively predict the car crossing time,with a lane change prediction efficiency of 83%.
作者 马晨浩 宇仁德 胡婧晖 步玫 MA Chenhao;YU Rende;HU Jinghui;BU Mei(School of Transportation and Vehicle Engineering,Shandong University of Technology,Zibo 255049,China)
出处 《山东理工大学学报(自然科学版)》 CAS 2021年第6期75-80,共6页 Journal of Shandong University of Technology:Natural Science Edition
关键词 NGSIM数据 越线时间 Spss回归 Matlab建模 多元非线性回归模型 NGSIM data cross line time Spss regression Matlab modeling multivariate nonlinear regression model
  • 相关文献

参考文献3

二级参考文献8

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部