期刊文献+

相参频率捷变雷达目标稀疏重建性能边界综述 被引量:4

Review of Performance bounds on sparse target recovery using coherent frequency agile radar
下载PDF
导出
摘要 相比频率固定的脉冲多普勒体制,频率捷变体制在抗干扰方面具有显著优势。但在该体制下,基于匹配滤波的信号处理算法存在旁瓣平台问题,难以与动目标检测兼容。压缩感知理论将目标参数估计建模作为欠定方程求解,为该问题提供了解决思路。在相参频率捷变雷达中,压缩感知能否准确重建目标是一个基础性问题。本文梳理了针对该问题的相关研究,借助相变理论与相变曲线的解析表达式,定量描述了捷变频雷达重建目标的成功概率与主要系统和目标参数之间的关系;该理论性能边界与仿真实际所能达到的性能相接近。此外,还探讨了现有成果在实际应用中的价值,展望了未来研究方向。 Frequency agile radar(FAR)significantly outperforms the traditional pulse-Doppler radar in the term of electronic counter-countermeasures,which applies constant carrier frequencies.However,FAR that uses matched filtering encounters problem of severe sidelobe pedestal,hindering its compatibility with moving target detection.Compressed sensing(CS)methods reconstruct target parameters by solving an under determined linear equation,hence relieve the sidelobe pedestal issue.It is a fundamental study to analyze whether FAR exactly recovers target with CS methods.This paper comprehensively reviews the state-of-the-art researches in this topic.Recent efforts derive closed-form phase transition curves,and reveal that these curves explicitly demonstrate the relationship between success rates of sparse recovery and parameters of the radar system as well as the observed scene.The theoretical performance bound is approximate to the results in practical simulations.The applicability of these theoretical results in practical scenarios and future research directions are discussed.
作者 黄天耀 李宇涵 王磊 刘一民 王希勤 HUANG Tianyao;LI Yuhan;WANG Lei;LIU Yimin;WANG Xiqin(Department of Electronic Engineering, Tsinghua University, Beijing 100084, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2021年第7期1729-1736,共8页 Systems Engineering and Electronics
基金 国家自然科学基金(61801258)资助课题。
关键词 频率捷变雷达 压缩感知 性能边界 相变 frequency agile radar compressed sensing performance bound phase transition
  • 相关文献

参考文献3

二级参考文献139

  • 1RichardGW.吕跃广,详.电子情报一雷达信号截获与分析[M].北京:电子工业出版社,2008:12-18.
  • 2赵宗峰.基于信号波形设计的SAR抗干扰技术研究[D].[硕士论文],国防科技大学,2007.
  • 3Pan Xiao-yi, Wang Wei, Feng De-jun, et al.. On deception jamming for countering bistntic ISAR based on sub-Nyquistsampling[J]. IET Radar, Sonar & Navigation, 2014, 8(3): 173-179.
  • 4Cands E, Romberg J, and Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency ilfformation[J]. IEEE Transactions on Information Th.eory, 2006, 52(2): 489-509.
  • 5Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 6Yang Jun-gang, Thompson J, Huang Xiao-tao, et al.. Raldom-fi-equency SAR imaging based on compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(2): 983-994.
  • 7Ugur S mid Arikaa O. SAR image reconstruction and autofocus by compressed sensing[J]. Digital Signal Processing, 2012, 22(7): 923-932.
  • 8Rao Wei, Li Gang, Wang Xi-qin, et al.. Adaptive sparse recovery by parametric weighted L minimization for ISAR imaging of uniformly rotating targets[J]. IEEE Journal o/ Selected Topics in Applied Earth ObseT"vations and Remote Sensing, 2013, 6(2): 942-952.
  • 9Samadi S, (etin M, ald Ali M. Multiple feature-enhanced SAR imaging using sparsity in combined dictionaries[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4): 821-825.
  • 10Hosein M G, Babaie Z M, and Jutten C. A fast approach forovercomplete sparse decomposition based on smoothed /0 norm[J]. IEEE Transactions on Signal Processing, 2009, 57(1): 289-301.

共引文献50

同被引文献79

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部