期刊文献+

单晶硅微铣削表面粗糙度实验研究

Experimental study on surface roughness of monocrystalline silicon by micro-milling
下载PDF
导出
摘要 单晶硅是一种难加工材料,为优化单晶硅微铣削工艺参数,在水基切削液条件下,采用直径0.5 mm的金刚石涂层微铣刀,在单晶硅(100)晶面[100]晶向进行全槽铣削加工,基于正交实验研究每齿进给量、主轴转速和轴向切削深度对表面粗糙度的影响规律,分析单晶硅表面形貌,结合未变形切削厚度研究表面粗糙度变化规律。结果表明:表面粗糙度随着最大未变形切削厚度的增大而增大;影响表面粗糙度的主次因素依次为每齿进给量、主轴转速、轴向切深,在加工参数f_(z)=0.05~0.4μm/z,n=10000~30000 r/min,a_(p)=5~15μm时,获得的最优工艺参数为f_(z)=0.05μm/z,n=10000 r/min,a_(p)=5μm,此时单晶硅表面粗糙度为Ra=0.138μm。 Monocrystalline silicon is a kind of material that is difficult to process.In order to optimize the process parameters of monocrystalline silicon,a diamond coated micromilling cutter with a diameter of 0.5 mm was used for full slot milling in the[100]direction of monocrystalline silicon(100)crystal plane under the condition of water-based cutting fluid.Based the orthogonal test,the effects of feed per tooth,spindle speed and axial cutting depth on the surface roughness were studied,and the surface morphology of monocrystalline silicon was analyzed.Combined with undeformed cutting thickness,the change law of surface roughness was studied.The results show that the surface roughness increases with the increase of the maximum undeformed cutting thickness,and the primary and secondary factors affecting the surface roughness are the feed per tooth,spindle speed and axial cutting depth in turn.When the machining parameter is f_(z)=0.05~0.4μm/z,n=10000~30000 r/min,a_(p)=5~15μm,the optimal process parameter is f_(z)=0.1μm/z,n=10000 r/min,a_(p)=5μm,and the surface roughness of monocrystalline silicon is Ra=0.138μm.
作者 许顺杰 曹自洋 王浩杰 XU Shunjie;CAO Ziyang;WANG Haojie(School of Mechanical Engineering,SUST,Suzhou 215009,China;Suzhou Key Laboratory of Precision and Efficient Machining Technology,Suzhou 215009,China)
出处 《苏州科技大学学报(工程技术版)》 2021年第2期75-80,共6页 Journal of Suzhou University of Science and Technology(Engineering and Technology Edition)
基金 国家自然科学基金项目(51905363) 江苏省中外合作办学平台联合科研项目(2019-21) 江苏省研究生科研与实践创新计划项目(KYCX19_2018)。
关键词 微铣削 单晶硅 正交实验 表面粗糙度 micro milling monocrystalline silicon orthogonal test surface roughness
  • 相关文献

参考文献6

二级参考文献71

  • 1王晋生,巩亚东,GABRIEL Abba,史家顺,蔡光起.微铣刀刀刃轨迹预测模型及影响因素分析[J].纳米技术与精密工程,2009,7(5):451-458. 被引量:1
  • 2李红涛,来新民,李成锋,倪军,林忠钦.介观尺度微型铣床开发及性能试验[J].机械工程学报,2006,42(11):162-167. 被引量:25
  • 3[3]Ehmann K F,Bourell D.WTEC Panel Report on International Assessment of Research and Development in Micro-manufacturing[R].USA:WTEC,2005.59-163.
  • 4[4]Liu X,DeVor E,Kappor S G.The mechanics of machining at the micro scale:assessment of the current state of the science[J].Journal of Manufacturing Science and Engineering,2004,126:666-678.
  • 5[5]Liu X,Jun M B,DeVor R E.Cutting mechanics and their influence on dynamic forces,vibrations and stability in micro-end milling[A].Proceedings ASME International Mechanical Engineering Congress and Exposition[C].California:ASME,2004,11:13-20.
  • 6[7]Bang Y B,Lee K.5-Axis micro milling machine for machining micro parts[J].Advanced Manufacturing Technology,2005,25:888-894.
  • 7[8]Takeuchi Y,Sakaida Y,Sawada K,et al.Development of a 5-axis control ultra precision milling machine for micromachining based on non-friction servomechanisms[J].Annals of CIRP,2000,49(1):29-33.
  • 8赵炳祯.微细切削加工的应用前景[J].工具展望,2002,(4):88-92.
  • 9[11]Fischer AG.FEZP系列[EB/OL].http://www.fischerag.com/2063.asp.,2005-09-01.
  • 10[12]Rooks B.The shrinking sizes in micro manufacturing[J].Assembly Automation,2004,4:352-356.

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部