期刊文献+

夜间复杂场景下红外图像行人检测算法研究 被引量:1

Infrared Pedestrian Detection in Complex Night Scenes
下载PDF
导出
摘要 针对夜间红外图像中行人与背景灰度差异小且存在遮挡等问题,提出了一种夜间复杂场景下的红外行人检测算法。首先利用行人语义融合方法生成对目标全覆盖的显著图,与原图融合得到感兴趣区域,然后构造基于改进的方向梯度直方图特征的两分支分类器,同时提出一种遮挡判别算法,根据分类器模糊分数判断是否遮挡,设计一种头部模板实现最终的行人检测。在LSI远红外行人数据集和自主采集的冬、夏季节夜间行人数据上进行实验,结果表明:在不同环境下,所提出的方法均可快速鲁棒地检测出行人,可较显著地降低漏检率,检测率可达到94.20%。 An infrared pedestrian detection algorithm is proposed to solve the problem of small differences between pedestrians and backgrounds in gray scale images and the occurrence of occlusion in infrared images at night.First,a significant graph with the full coverage of the target is generated by the pedestrian semantic fusion method,and the region of interest is obtained by combining it with the original graph.Then,a two-branch classifier based on the improved histogram of the gradient feature is constructed.The fuzzy score of the classifier is used to determine the occurrence of occlusion and call the head template for the final detection.Experiments based on the LSI far infrared pedestrian dataset and independent datasets of pedestrians captured at night in winter and summer prove that the proposed method is robust and quick in detecting pedestrians under different environments.It can significantly reduce the rate of missed detection and realize a detection rate of 94.20%.
作者 赵双 陈树越 王巧月 ZHAO Shuang;CHEN Shuyue;WANG Qiaoyue(School of Information Science and Engineering,Changzhou University,Changzhou 213164,China)
出处 《红外技术》 CSCD 北大核心 2021年第6期575-582,共8页 Infrared Technology
基金 江苏省研究生科研创新基金项目(KYCX19_1770)。
关键词 红外图像 行人检测 显著性 复杂情况 方向梯度直方图特征 infrared image pedestrian detection saliency complex censes HOG feature
  • 相关文献

参考文献2

二级参考文献16

  • 1罗忠,谢永斌,朱重光.CMAC学习过程收敛性的研究[J].自动化学报,1997,23(4):455-461. 被引量:26
  • 2王江涛,杨静宇.红外图像中人体实时检测研究[J].系统仿真学报,2007,19(19):4490-4494. 被引量:12
  • 3Suard F,Rakotomamonjy A,Bensrhair A,et al.Pedestrian Detection Using Infrared Images and Histograms of Oriented Gradients[C]//Proceedings of IEEE Intelligent Vehicles Symposium.Washington D.C.,USA:IEEE Press,2006:206-212.
  • 4Mohan A,Papageorgiou C,Poggio T.Example-based Object Detection in Images by Components[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(4):349-361.
  • 5Dalal N,Triggs B.Histograms of Oriented Gradients for Human Detection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,USA:IEEE Press,2005:886-893.
  • 6Benenson R,Mathias M,Tuytelaars T,et al.Seeking the Strongest Rigid Detector[C]//Proceedings of CVPR’13.[S.l.]:IEEE Press,2013:3666-3673.
  • 7Wu B,Nevatia R.Detection of Multiple,Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors[C]//Proceedings of ICCV’05.[S.l.]:IEEE Press,2005:90-97.
  • 8Kim D S,Kim M.Histograms of Local Intensity Differences for Pedestrian Classification in Far-infrared Images[J].Electronics Letters,2013,49(4):258-260.
  • 9Fang Y,Yamada K,Niomiya Y,et al.A Shapeindependent Method for Pedestrian Detection with Farinfrared Images[J].IEEE Transactions on Vehicular Technology,2004,53(6):1679-1697.
  • 10Chang Shyang-Lih,Yang Fu-Tzu,Wu Wen-Po,et al.Nighttime Pedestrian Detection Using Thermal Imaging Based on HOG Feature[C]//Proceedings of2011International Conference on System Science and Engineering.Macao,China:[s.n.],2011:694-698.

共引文献17

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部