摘要
In the paper, we study a high order numerical boundary scheme for solving the complex moving boundary problem on a fixed Cartesian mesh, and numerically investigate the moving rigid body with the complex boundary under the impingement of an inviscid shock wave. Based on the high order inverse Lax-Wendroff(ILW) procedure developed in the previous work(TAN, S. and SHU, C. W. A high order moving boundary treatment for compressible inviscid flows. Journal of Computational Physics, 230(15),6023–6036(2011)), in which the authors only considered the translation of the rigid body,we consider both translation and rotation of the body in this paper. In particular, we reformulate the material derivative on the moving boundary with no-penetration condition, and the newly obtained formula plays a key role in the proposed algorithm. Several numerical examples, including cylinder, elliptic cylinder, and NACA0012 airfoil, are given to indicate the effectiveness and robustness of the present method.
基金
Project supported by the National Natural Science Foundation of China (Nos. 11901555, 11901213,11871448, and 11732016)
the National Numerical Windtunnel Project (No. NNW2019ZT4-B10)。