摘要
为了有效解决在极端环境下智慧温室内部分传感器不工作导致产生缺失值及数据准确性的问题。以智慧温室传感器采集的数据为研究对象,利用多种机器学习算法进行数据插补,同时利用3σ定律和数据融合对插补后的数据集进行预处理,提高了数据集的完整性与准确性。为技术人员进一步分析、处理数据,实现智慧温室精确控制提供了更加准确可靠的数据源。
In order to effectively solve the problems of missing values and data accuracy caused by some sensors not working in the smart greenhouse in the extreme environment.The paper takes the data collected by the smart greenhouse sensor as the research object, and a variety of machine learning algorithms are used for data interpolation, and 3σ law and data fusion are used to preprocess the interpolated data set, which improves the integrity and accuracy of the data set. The study will provide a more accurate and reliable data source for technicians to further analyze and process data, and to realize the precise control of smart greenhouse.
作者
唐友
李卓
揣小龙
TANG You;LI Zhuo;CHUAI Xiaolong(College of Electrical and Information Engineering,Jilin Agricultural Science and Technology Uni-versity,Jinlin 132101,China;College of Information Technology,Jilin Agricultural University,Changchun 130118,China)
出处
《吉林农业大学学报》
CAS
CSCD
北大核心
2021年第2期237-243,共7页
Journal of Jilin Agricultural University
基金
吉林省智慧农业工程研究中心建设项目(2016)
吉林省特色高水平学科新兴交叉学科“数字农业”项目(2018)。
关键词
传感器
数据处理
缺失值预测
数据融合
填补准确率
3σ定律
sensor
data processing
missing value prediction
data fusion
filling accuracy rate
three-sigma rule