摘要
研究一类含时间分数阶导数的膜振动方程,该方程边界正弦摄动变化。先对边界自变量应用泰勒级数展开,引入多重尺度到原方程及边界,利用Riemann-Liouville分数阶导数定义和性质得到关于小参数的零阶近似解。应用微分不等式理论证明了解的一致有效性。利用图形分析出各参数对解的影响。
Here,a class of membrane vibration equation with time fractional derivative was studied.The equation boundary varied with sinusoidal perturbation.Taylor series was applied to expand the boundary independent variable,and then multi-scale were introduced to the original equation and boundary.By using the definition and properties of Riemann-Liouville fractional derivative,the approximate solution of the equation for the zero-order small parameter was obtained.Furthermore,the consistent effectiveness of the solution was proved by using the theory of differential inequalities.Finally,the influence of each parameter on the solution was analyzed using graphs.
作者
葛志新
陈咸奖
GE Zhixin;CHEN Xianjiang(School of Mathematics&Physics,Anhui University of Technology,Maanshan 243002,China;School of Economics,Anhui University of Technology,Maanshan 243002,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2021年第11期248-251,共4页
Journal of Vibration and Shock
基金
安徽省高校自然科学研究重点项目(KJ2016A084,KJ2019A0062)
2018年安徽工业大学大学生创新创业训练计划项目推荐项目(省级)(201810360367)。
关键词
多重尺度
分数阶导数
微分不等式
multi-scale
time fractional derivative
differential inequality