期刊文献+

一类三阶微分方程解的渐近性

The Asymptotic Properties of Solutions to A Class of Third-Order Differential Equations
原文传递
导出
摘要 研究了一类三阶微分方程解的渐近性,方程左端函数中不仅有未知函数,而且含有该未知函数的一阶与二阶导数,利用F.M.Dannan导出的Gronwall-Bellman-Bihari型不等式,并结合微积分技巧和洛必达法则,在一定条件下获得了该类方程解的一种新型的渐近行为.最后给出一个应用实例来证实结果的有效性. In this paper,we studied the asymptotic behavior of the solution of a class of third-order differential equations.On the left side of the equation,there are not only the unknown function but also its first and second derivatives in the continuous function.We obtained a new kind of asymptotic behavior of the solution of this kind of equation under given fixed conditions by using the Gronwall-Bellman-Bihari inequality derived by F.M.Dannan and combining with calculus techniques and l’Hopital’s rule.Finally,we gave an application example to verify the validity ofthe results.
作者 覃炜达 王五生 QIN Wei-da;WANG Wu-sheng(Department of Mathematics and Statistics,Hechi University,Yizhou 546300,China)
出处 《数学的实践与认识》 2021年第12期279-285,共7页 Mathematics in Practice and Theory
基金 国家自然科学基金(11561019,11961021) 广西自然科学基金(2020GXNSFAA159084)。
关键词 三阶微分方程 积分不等式 微积分技巧 解的渐近性 third-order differential equation integral inequality calculus skills the asymptotic property of the solution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部