摘要
研究了一类三阶微分方程解的渐近性,方程左端函数中不仅有未知函数,而且含有该未知函数的一阶与二阶导数,利用F.M.Dannan导出的Gronwall-Bellman-Bihari型不等式,并结合微积分技巧和洛必达法则,在一定条件下获得了该类方程解的一种新型的渐近行为.最后给出一个应用实例来证实结果的有效性.
In this paper,we studied the asymptotic behavior of the solution of a class of third-order differential equations.On the left side of the equation,there are not only the unknown function but also its first and second derivatives in the continuous function.We obtained a new kind of asymptotic behavior of the solution of this kind of equation under given fixed conditions by using the Gronwall-Bellman-Bihari inequality derived by F.M.Dannan and combining with calculus techniques and l’Hopital’s rule.Finally,we gave an application example to verify the validity ofthe results.
作者
覃炜达
王五生
QIN Wei-da;WANG Wu-sheng(Department of Mathematics and Statistics,Hechi University,Yizhou 546300,China)
出处
《数学的实践与认识》
2021年第12期279-285,共7页
Mathematics in Practice and Theory
基金
国家自然科学基金(11561019,11961021)
广西自然科学基金(2020GXNSFAA159084)。
关键词
三阶微分方程
积分不等式
微积分技巧
解的渐近性
third-order differential equation
integral inequality
calculus skills
the asymptotic property of the solution