摘要
局部引力模型(Local Gravitation Model,LGM)是2018年提出的用于数据聚类的方法,其区别于传统引力聚类模型之处在于计算局部中心量度的过程中同时使用了局部引力合力的模长和方向信息。近年来,研究人员针对局部引力模型进行了改进泛化,提出了一系列新型聚类算法。笔者就局部引力聚类算法的发展趋势进行综述,对相关研究方向作展望。
The Local Gravitation Model(LGM)in machine learning is proposed for data clustering in the year 2018.Unlike the traditional gravitational clustering model,the LGM takes both the magnitude and the direction of the local result force into consideration.Recently,some researchers published several papers that improve the performance of the LGM,with several new clustering algorithms proposed.This paper reviews the recent development of the LGM,and discusses the foreground of the LGM.
作者
王志强
WANG Zhiqiang(Sanya Institute of Technology,Sanya Hainan 572022,China)
出处
《信息与电脑》
2021年第8期56-58,共3页
Information & Computer
关键词
局部引力模型
引力聚类
局部引力聚类
聚类算法
local gravitation model
gravitational clustering
local gravitation clustering
clustering algorithm