期刊文献+

涡轮与冲压组合动力高温进气预冷特性 被引量:2

Pre-cooling characteristics of high temperature inlet air for turbine power combined with ramjet
原文传递
导出
摘要 针对涡轮基冲压组合循环发动机中高温进气影响涡轮发动机性能的问题,开展实际某高空模拟试验进气预冷段的数值分析。基于欧拉-拉格朗日多相流方法解析气液两相热质传输过程,探索射流冷却对不同高空高马赫数进气条件时预冷段内温度和压力的沿程变化规律。结果表明,射流冷却对流场具有明显地温降效果。带有射流装置的预冷段内流动损失是以由黏性耗散所引起的耗散熵产为主,而由气-液传热温差所引起流场温度梯度变化的加热熵产并不显著。对比高空模拟试验进气工况在射流量4%~7%的冷却效果发现,预冷段内气流温降程度为32.30~90.08 K,冷却前后总压降系数范围由1.42%~1.86%降低到0.95%~1.46%。因此,射流冷却技术在一定程度上改善涡轮发动机在高空高马赫数工作时进气流场特性。 To solve the negative effect of high temperature inlet air on the turbo engine performance in the turbine-based ramjet combined cycle engine, numerical analysis on the pre-cooling section of a real high-altitude simulation experiment was carried out. Based on the Eulerian-Lagrangian multiphase flow method, the heat and mass transfer process of gas-liquid two-phase was analyzed. And then, the temperature and pressure fields in the pre-cooling section were explored at different high altitudes and high Mach number inlet air conditions. Results showed that mass injection had an obvious improvement on temperature drop. The flow loss in the pre-cooling section with injection device was mainly caused by the dissipative entropy production due to the viscous dissipation, while the heating entropy production caused by the temperature gradient change of the flow field due to the gas-liquid heat transfer temperature difference was not significant. By comparing the cooling effect of 4%-7% water/air ratio at the high-altitude simulation inlet air conditions, it can be discovered that the airflow temperature drop in the pre-cooling section was within the range of 32.30-90.08 K, and the total pressure drop coefficient was reduced from 1.42%-1.86% to 0.95%-1.46% before and after mass injection cooling. Therefore, mass injection cooling can improve inlet air flow field characteristics of turbine engine at high altitude and high Mach number.
作者 林阿强 郑群 夏全忠 张海 刘高文 LIN Aqiang;ZHENG Qun;XIA Quanzhong;ZHANG Hai;LIU Gaowen(School of Power and Energy,Northwestern Polytechnical University,Xi’an 710129,China;Shaanxi Key Laboratory of Thermal Science in Aero-engine System,Northwestern Polytechnical University,Xi’an 710072,China;College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001;Science and Technology on Altitude Simulation Laboratory,Sichuan Gas Turbine Establishment,Aero Engine Corporation of China,Mianyang Sichuan 621700,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2021年第5期987-996,共10页 Journal of Aerospace Power
基金 中央高校基本科研业务费专项资金(3102021OQD701)。
关键词 涡轮基冲压组合循环 预冷段 高温进气 射流冷却 蒸发传热 流场特性 turbine-based ramjet combined cycle pre-cooling section high temperature inlet air mass injection cooling evaporation and heat transfer flow field characteristics
  • 相关文献

参考文献5

二级参考文献43

  • 1王占学,乔渭阳.预冷却涡轮基组合循环发动机发展现状及应用前景[J].燃气涡轮试验与研究,2005,18(1):53-56. 被引量:16
  • 2李刚团,李继保,周人治.涡轮-冲压组合发动机技术发展浅析[J].燃气涡轮试验与研究,2006,19(2):57-62. 被引量:20
  • 3李宇.三维流/热耦合数值模拟程序的发展及方法研究[D].北京:北京航空航天大学,2011.
  • 4Mesnard J. Overview of the British Aerospace Hotol Transatmospheric Vehicle[R].NASA-TM-88008, 1986.
  • 5Koelle D. Sanger Advanced Space Transportation SystemProgress Report 1990[R].AIAA 90-5200.
  • 6Carter P H, Balepin V V. Mass Injection and Precompressor Cooling Engines Analyses[R].AIAA 2002-4127.
  • 7Balepin V V, Liston G W. The Steam JetTM: Mach 6+ Turbine Engine with Inlet Air Conditionin[R].AIAA-2001-3238.
  • 8Tanatsugu N,Sato T,Balepin V V,et al. Development Studyon ATREX Engine[R].AIAA 96-4553.
  • 9Mizobata K,Arai T,Sugiyama H. Conceptual Feasibility of Reusable Launch Vehicles Based on the ATREX Engine[R].AIAA 99-4829.
  • 10Sato T,Tanatsugu N,Hatta H,et al. Development Study of the ATREX Engine for TSTO Spaceplane[R].AIAA 2001-1839.

共引文献79

同被引文献13

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部