期刊文献+

BMI对衰弱老年人全因死亡率影响的剂量-反应Meta分析 被引量:5

Efficacy of BMI on all-cause mortality in frail elderly:a dose-response meta-analysis
原文传递
导出
摘要 目的系统评价体质量指数(BMI)对衰弱老年人全因死亡率是否存在剂量-反应关系。方法计算机检索PubMed、EMbase、Web of Science、CBM、VIP、WanFang Data和CNKI数据库,搜集关于BMI对衰弱老年人死亡率影响的队列研究,检索时限均从建库至2019年11月。由2名研究者独立筛选文献、提取资料并评价纳入研究的偏倚风险后,采用Stata 15.0软件使用限制性立方样条函数和广义最小二乘估计方法(GLST)分析BMI对衰弱老年人死亡率影响的剂量-反应关系。结果共纳入4个前瞻性队列研究,包括12861例衰弱老年人。Meta分析结果显示:与正常BMI的衰弱老年人相比,超重[HR=0.80,95%CI(0.74,0.88),P<0.001]和肥胖[HR=0.89,95%CI(0.79,1.00),P=0.047]的衰弱老年人的全因死亡率更低。剂量-反应Meta分析提示:BMI与衰弱老年人全因死亡率间存在非线性关系(非线性检验P=0.035),BMI 27.5~31.9 kg/m2时衰弱老年人全因死亡率最低。对于线性趋势,BMI小于27.5 kg/m2时BMI每增加1 kg/m2,衰弱老年人的全因死亡风险降低4%[RR=0.96,95%CI(0.90,1.03),P=0.320];BMI大于27.5 kg/m2时BMI每增加1 kg/m2,衰弱老年人的全因死亡风险增加4%[RR=1.04,95%CI(1.03,1.05),P<0.001]。结论当前证据表明,BMI与衰弱老年人的全因死亡率间呈明显非线性关系且存在肥胖悖论,BMI 27.5~31.9 kg/m2时衰弱老年人全因死亡率最低。受纳入研究数量和质量的限制,上述结论尚待更多高质量研究予以验证。 Objective To systematically review the dose-response relationship between body mass index(BMI)and all-cause mortality in the elderly with frailty.Methods PubMed,EMbase,Web of Science,CNKI,VIP,WanFang Data,and CBM databases were electronically searched to collect cohort studies on the association of BMI and mortality in frail adults from inception to November 2019.Two reviewers independently screened literature,extracted data and assessed risk bias of included studies;Stata 15.0 software was then used to analyze the dose-response analysis of BMI and mortality by restricted cubic spline function and generalized least squares method.Results A total of 4 cohort studies involving 12861 frail adults were included.Meta-analysis results showed that compared with normal BMI,the frail elderly who were overweight(HR=0.80,95%CI 0.74 to 0.88,P<0.001)and obese(HR=0.89,95%CI 0.79 to 1.00,P=0.047)had lower all-cause mortality.The results of dose-response meta-analysis showed that there was a non-linear relationship between BMI and all-cause mortality in the elderly with frailty(P value for nonlinearity was 0.035),for which the elderly with frailty had a BMI nadir of 27.5-31.9 kg/m2.For linear trends,and when BMI was less than 27.5 kg/m2,the risk of allcause death was reduced by 4%for every 1 kg/m2 increase in BMI(RR=0.96,95%CI 0.90 to 1.03,P=0.320),when BMI was greater than 27.5 kg/m2,the risk of all-cause death increased by 4%for every 1 kg/m2 increase in BMI(RR=1.04,95%CI1.03 to 1.05,P<0.001).Conclusions There is a paradox of obesity and a significant nonlinear relationship between BMI and all-cause mortality in the frailty elderly,with the lowest all-cause mortality in the frailty elderly at BMI 27.5-31.9 kg/m2.Due to limited quality and quantity of the included studies,more high quality studies are needed to verify the above conclusions.
作者 赵黎 徐畅 陈飞 牛芳 高倩倩 梅凡 胡凯燕 赵冰 张维益 姜彦彪 马彬 ZHAO Li;XU Chang;CHEN Fei;NIU Fang;GAO Qianqian;MEI Fan;HU Kaiyan;ZHAO Bing;ZHANG Weiyi;JIANG Yanbiao;MA Bin(Evidence-Based Nursing Center,School of Nursing,Lanzhou University,Lanzhou 730000,P.R.China;Chinese Evidence-Based Medicine Center and Chinese Cochrane Center,West China Hospital,Sichuan University,Chengdu 610041,P.R.China;Lanzhou University Second Hospital,Lanzhou 730000,P.R.China;Evidence-Based Medicine Center,School of Basic Medical Sciences,Lanzhou University,Lanzhou 730000,P.R.China;School of Public Health,Lanzhou University,Lanzhou 730000,P.R.China;Key Laboratory of Evidence-Based Medicine and Clinical Transformation in Gansu Province,Lanzhou 730000,P.R.China)
出处 《中国循证医学杂志》 CSCD 北大核心 2021年第6期654-661,共8页 Chinese Journal of Evidence-based Medicine
基金 国家自然科学基金项目(编号:81873184)。
关键词 体质量指数 衰弱 全因死亡率 META分析 剂量-反应关系 Body mass index Frailty All-cause mortality Meta-analysis Dose-response relationship
  • 相关文献

参考文献8

二级参考文献48

  • 1黄蕾,何烨颖,田德兴,文才.慢性阻塞性肺疾病急性加重期患者营养风险与临床结局的关系研究[J].中华临床医师杂志(电子版),2012,6(16):4638-4641. 被引量:12
  • 2曾宪涛, 主编. 应用STATA做Meta分析. 北京: 军事医学科学出版社, 2014.
  • 3Sauerbrei W, Royston P. A new strategy for meta-analysis of continuous covariates in observational studies. Stat Med, 2011, 30(28): 3341-3360.
  • 4Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BM], 2008, 336(7650): 924-946.
  • 5Royston P, Ambler G, Sauerbrei W. The use of fractional polynomials to model continuous risk variables in epidemiology. Int ] Epiderniol, 1999, 28(5): 964-974.
  • 6Royston P. A strategy for modelling eth effect of a continuous covariate in medicine and epidemiology. Star Meal, 2000, 19(14): 1831-1847.
  • 7Orsini N, Li R, Wolk A, et al. Meta-analysis for linear and nonlinear dose-response relations: examples, an evaluation of approximations, and software. Am ]Epiderniol, 2012, 175(1): 66-73.
  • 8Gasparrini A, Armstrong B. Multivariate meta-analysis: a method to summarize non-linear associations. Stat Med, 2011, 30(20): 2504- 2506.
  • 9Qin L, Cook NR, Bergstrom A, et al. A two-stage hierarchical regression model for meta-analysis of epidemiologic nonlinear dose-response data. CS & DA, 2009, 53(12): 4157-4167.
  • 10Mills PK, Beeson WL, Phillips RL, Fraser GE. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer, 1989, 64(3): 598-604.

共引文献121

同被引文献57

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部