期刊文献+

基于聚苯并咪唑/超支化聚合物的交联共混体系的高温质子交换膜 被引量:1

High-temperature Proton Exchange Membranes Based on Cross-linked Polybenzimidazole/hyperbranched-polymer Blends
下载PDF
导出
摘要 在可溶性高分子量芳醚型聚苯并咪唑(OPBI)基体中引入超支化聚对氯甲基苯乙烯(H-VBC),通过便捷的溶液共混-浇铸法,制备了基于聚苯并咪唑/超支化聚合物的新型交联体系(OPBI/H-VBC-1和OPBI/H-VBC-2),并对膜进行季铵盐化处理(OPBI/H-VBC-QA-1和OPBI/H-VBC-QA-2),实现了复合膜综合性能的提升.与原始OPBI膜相比,交联型复合膜表现出优异的尺寸稳定性和"抗塑化"能力.在85%磷酸中浸泡72 h后,OPBI/H-VBC-2和OPBI/H-VBC-QA-2的体积膨胀率只有184.2%和152.4%,而OPBI的体积膨胀率达到336.5%;OPBI/H-VBC-2和OPBI/H-VBC-QA-2的最大拉伸强度分别达到36.3和21.9 MPa,比单一OPBI膜的10.9 MPa提高了56%-233%.研究发现,季铵盐化的复合膜具有更高的质子传导率(在200℃下的质子传导率分别达到151.5和103.4 mS/cm)与磷酸吸收水平比值.对比研究发现,所制备的交联型复合膜比已报道大多数高温质子交换膜(HT-PEM)具有更优异的质子传导率与力学强度平衡能力. In this study,we introduced a hyperbranched poly(p-chloromethylstyrene)(H-VBC)into a soluble high-molecular weight arylether-type polybenzimidazole(OPBI)matrix,and a new type of cross-linking system(OPBI/H-VBC-1 and OPBI/H-VBC-2)based on polybenzimidazole/hyperbranched polymer was obtained through the convenient solution blending-membrane casting preparation process. Finally,the comprehensive performance of the blend membranes was greatly improved. In comparison to the pristine OPBI membrane,the cross-linked blend membranes had more excellent dimensional stability and resistance to plasticization. After soaking in 85% phosphoric acid for 72 h,the volume swelling ratios of OPBI/H-VBC-2 and OPBI/HVBC-QA-2(the quaternized membrane)were only 184.2% and 152.4%,respectively;while the swelling ratio of OPBI reached 336.5%. The maximum tensile strengths of OPBI/H-VBC-2 and OPBI/H-VBC-QA-2 reached36.3 and 21.9 MPa,respectively,which were 56%—233% higher than the 10.9 MPa of OPBI membrane. We also found that the quaternized membranes had a higher ratio of proton conductivity to phosphoric acid absorption level than corresponding unquaternized ones. At 200 ℃,the proton conductivities of the quaternized composite membrane reached 151.5 and 103.4 mS/cm,respectively. Further,a comparative study showed that the quaternized cross-linked blend membranes had a better balance ability of proton conductivity and mechanical strength than most of the reported high-temperature proton exchange membranes(HT-PEMs).
作者 曹凯悦 彭金武 李宏斌 石埕荧 王鹏 刘佰军 CAO Kaiyue;PENG JinWu;LI Hongbin;SHI Chengying;WANG Peng;LIU Baijun(Key Laboratory of High-Performance Plastics,Ministry of Education,College of Chemistry,Jilin University,Changchun 130012,China)
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2021年第6期2049-2055,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:51873076,52073118,52073044) 吉林省科技发展计划项目(批准号:20180201076GX,20200401036GX) 吉林省产业技术研究与开发基金(批准号:2019C042-4)资助。
关键词 燃料电池 高温质子交换膜 大分子交联剂 超支化聚合物 聚苯并咪唑 Fuel cell High-temperature proton exchange membrane Macromolecular crosslinking agent Hyperbranched polymer Polybenzimidazole
  • 相关文献

参考文献3

二级参考文献36

  • 1李先锋,那辉,陆辉.一种新型的用于质子交换膜燃料电池的磺化聚醚醚酮酮[J].高等学校化学学报,2004,25(8):1563-1566. 被引量:16
  • 2卿胜波,黄卫,颜德岳.耐高温磺化聚苯并咪唑的合成与表征[J].高等学校化学学报,2005,26(11):2145-2148. 被引量:14
  • 3Pu H.T.,Ye S..Polym.Bul.[J],2006,2:9-17.
  • 4Chen B.S.,Luan D.C.,Jiao G.P.,Zhao D.,Zou Z.J..New Chemical Materials[J],2007,35(11):8-10.
  • 5Lu Y.H.,Chen J.M.,Zhou H.D..Materials Review[J],2009,23(4):56-60.
  • 6Pu H.T.,Meyer W.H.,Wegner G..J.Polym.Sci.Part A:Polym.Phys.[J],2002,40(7):663-669.
  • 7Li Q.,He R.,Jensen J.O.,Bjerrum N.J..Fuel Cells[J],2004,4(3):147-159.
  • 8Pu H.T.,Liu Q.Z..Polym.Int.[J],2004,53(10):1512-1516.
  • 9Jannasch P..Fuel Cells[J],2005,5(2):248-260.
  • 10Asensio J.A.,Gomez-Romero P..Fuel Cells[J],2005,5(3):336-343.

共引文献27

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部