期刊文献+

基于小波包时频图特征和卷积神经网络的水声信号分类 被引量:6

Classification of underwater acoustic signals based on time-frequency map features of wavelet packet and convolutional neural network
下载PDF
导出
摘要 水下声信号分类是水声学研究的一个重要方向。一个有效的特征提取和分类决策方法对水声信号分类技术至关重要。文章将鱼声、商船辐射噪声和风关噪声三类实测的水声信号在小波包分解的基础上提取时频图特征,并搭建了一个七层结构的卷积神经网络作为分类器。研究结果表明:三种水声信号的小波包时频图特征结合卷积神经网络在不同测试集可达到(98±1)%的总体准确率。因此,小波包时频图特征结合卷积神经网络的水声分类方法可望推广至更多水声信号分类。该研究结果可为水声信号的分类识别研究提供应用参考。 Underwater acoustic signal classification is an important research direction in underwater acoustics,and an effective feature extraction and classification decision method is of great concern for underwater acoustic signal classi-fication technology.In this paper,based on wavelet packet decomposition,the time-frequency map features of three kinds of underwater acoustic signals,namely fish vocalization signals,merchant ship radiated noise signals and wind-generated noise signals,are extracted,and a convolutional neural network(CNN)with seven-layer structure is set up as a classifier.The research results show that the accuracy of the three kinds of acoustic signals by the methods of combining the time-frequency map features of wavelet packet and the convolutional neural network can reach(98±1)%in different test sets.Therefore,the method can be expected to be used for the classification of more underwater acoustic signals.This research results can provide a reference for the classification and recognition of underwater acoustic signals.
作者 陈德昊 林建恒 衣雪娟 孙军平 江鹏飞 李承帮 CHEN Dehao;LIN Jianheng;YI Xuejuan;SUN Junping;JIANG Pengfei;LI Chengbang(University of Chinese Academy of Sciences,Beijing 100049,China;Qingdao Branch,Institute of Acoustics,Chinese Academy of Sciences,Qingdao 266114,Shandong,China)
出处 《声学技术》 CSCD 北大核心 2021年第3期336-340,共5页 Technical Acoustics
基金 国家自然科学基金(11804361) 国家重点研发计划资助课题(2019YFD0901301)资助项目。
关键词 水声信号 小波包分解 时频图 卷积神经网络 分类 underwater acoustic signals wavelet packet decomposition time-frequency map convolutional neural network(CNN) classification
  • 相关文献

参考文献6

二级参考文献38

  • 1李书进,虞晖,瞿伟廉.基于Hilbert-Huang变换的结构损伤诊断[J].武汉理工大学学报,2004,26(8):44-47. 被引量:22
  • 2丁玉薇.被动声纳目标识别技术的现状与发展[J].声学技术,2004,23(4):253-257. 被引量:33
  • 3张贤达.现代信号处理[M].清华大学出版社,1998.436-437.
  • 4Maksym J N, Bonner A J, Dent C A, et al. Machine analysis of acoustical signals. [ J ]. Pattern Recognition, 1983,16(6) :615 -625.
  • 5Rajagopal R, et al. Target classification in passive sonar-an expert system approach [ A ]. Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing, 1990:2911 - 2914.
  • 6Rajagopal R, Kumar K A, Rao P R. An Integrated Passive Target Classification[ A ]. IEEE International Conference on Acoustics,Speech, and Signal Processing. 1994, ( 2 ) : 313 -316.
  • 7Kummert A. Fuzzy technology implemented in sonar systems[ J]. IEEE J. of Oceanic Eng., 1993,18 (4) :483 - 490.
  • 8BOASHASH B. A methodology for detection and classification of some underwater acoustic signals using time frequency analysis techniques[ J ]. IEEE Trans ASSP, 1990,38(11) :1829 - 1841.
  • 9BROCKETT P L, HINICH M ,WILSON G R. Nonlinear and non-gaussian ocean noise [J]. JASA,1987,82(4) : 16 -21.
  • 10NIKIAS C, MENDEL J. Signal processing with higher-order statistics[ J ]. IEEE Trans Signal Processing, 1993, 41:10-38.

共引文献90

同被引文献57

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部