期刊文献+

基于GA和PSO的电动客车锂离子电池SOC估计 被引量:2

SOC estimation of Li-ion battery in electric bus based on GA and PSO
下载PDF
导出
摘要 以广州某巴士企业电动公交在实际运行和停车充电状态下的电压、电流和荷电状态(SOC)的数据,分别建立基于支持向量回归机(SVR)的锂离子电池放电和充电的SOC估计模型,并利用网格搜索法(GS)、遗传算法(GA)和粒子群算法(PSO)进行参数优化,对比估计精度和拟合优度。处理放电阶段数据时,基于PSO优化后的SOC估计模型误差为2.39%,拟合优度为0.913,均优于其他算法;处理充电阶段数据时,基于GA优化后的SOC估计模型误差为0.16%,拟合优度为0.990,优化效果最好。针对不同阶段的SOC估计,可采用不同的算法来优化估计模型,以提高精度和拟合优度。 The voltage,current and state of charge(SOC)data in the case of actual operation and charging state while stopping of electric bus from a Guangzhou bus company were selected,the SOC estimation model for Li-ion battery based on support vector regression(SVR)under discharge and charge was built.The grid search(GS),genetic algorithm(GA)and particle swarm optimization(PSO)were used to optimize the parameters,the estimation accuracy and goodness of fit were compared.When processing the data in discharge stage,the model estimation error after optimization based on PSO was 2.39%,the goodness of fit was 0.913,better than other algorithms.When processing the data in charge stage,the estimation error of the model optimized based on GA was 0.16%,the goodness of fit was 0.990,which showed the best optimization effect.For SOC estimation at different stages,different algorithms could be used to optimize the estimation model respectively to improve the accuracy and goodness of fit.
作者 王仲旭 张圣渠 刘强 WANG Zhong-xu;ZHANG Sheng-qu;LIU Qiang(School of Intelligent Systems Engineering,Sun Yat-sen University,Guangzhou,Guangdong 510006,China;Guangdong Province Key Laboratory of Intelligent Transportation System,Guangzhou,Guangdong 510006,China)
出处 《电池》 CAS 北大核心 2021年第3期221-224,共4页 Battery Bimonthly
基金 国家自然科学基金项目(51675540) 东莞市社会科技发展重点项目(20185071551596)。
关键词 锂离子电池 荷电状态(SOC) 支持向量回归机(SVR) 算法优化 Li-ion battery state of charge(SOC) support vector regression(SVR) algorithm optimization
  • 相关文献

参考文献6

二级参考文献31

  • 1林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:199
  • 2林成涛,仇斌,陈全世.电流输入电动汽车电池等效电路模型的比较[J].机械工程学报,2005,41(12):76-81. 被引量:59
  • 3刘靖旭,蔡怀平,谭跃进.支持向量回归参数调整的一种启发式算法[J].系统仿真学报,2007,19(7):1540-1543. 被引量:25
  • 4VapnikVN.统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5ANBUKY A,PASCOE P.A battery state-of-charge estimation in telecommunication power systems [J]. IEEE Trans Ind Electron, 2000,47(3) : 565-573.
  • 6CHARKHGARD M, FARROKHI M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF[J].IEEE Trans Ind Electron, 2010,57(12) :4178-4187.
  • 7HANSEN T,WANG C J. Support vector based battery state of charge estimator[J].J Power Sources,2005,141 : 351-358.
  • 8HONGWEN H, RUI X, XIAOWEI Z, et al. State-of-charge estima- tion of the lithium-ion battery using an adaptive extended kalman filter based on an improved thevenin model [J]. IEEE Trans Veh Tech, 2011,60(4) : 1461-1469.
  • 9COLEMAN M, LEE C K, ZHU C, et al. State-of-charge determina- tion from EMF voltage estimation: using impedance, terminal voltage,and current for lead-acid and lithium-ion batteries [J]. IEEE Trans Ind. Electron, 2007,54(5) : 2550-2557.
  • 10徐飞,徐卫亚,王珂.基于蚁群优化最小二乘支持向量机模型的边坡稳定性分析[J].工程地质学报,2009,17(2):253-257. 被引量:17

共引文献86

同被引文献91

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部