期刊文献+

基于ARMAX模型和稀疏正则化的结构损伤识别方法 被引量:3

Structural Damage Identification Based on ARMAXModel and Sparse Regularization
下载PDF
导出
摘要 结构健康监测系统对于保障工程结构安全具有重要意义,而结构损伤识别方法是结构健康监测系统的关键组成部分。本文提出一种基于时间序列ARMAX模型和稀疏正则化的结构损伤识别方法。首先,建立与结构运动方程对应的ARMAX模型,并利用模型自回归系数提取结构的固有频率和振型;然后,将提取的结构模态参数作为损伤敏感特征,构建损伤识别求解方程;最后,结合结构损伤的稀疏特性,使用稀疏正则化算法对方程进行求解,由解向量中的非零元素可得结构损伤的位置和程度。进行了一个六层集中质量剪切结构试验,试验结果表明该方法可以准确识别出结构中损伤的位置和程度,与传统损伤识别方法相比,该方法有效提高了损伤识别的精度。 Structural health monitoring systems play an important role in the safety of civil engineering,and structural damage identification method is the key part of structural health monitoring system.A structural damage identification method based on ARMAX model and sparse regularization is proposed in this paper.First,an ARMAX model corresponding to the structural motion equation is established,and structural natural frequencies and mode shapes are extracted from the autoregressive coefficients of the model.Second,the structural modal parameters are employed as damage sensitive features,and an equation for damage identification is built.Last,the damage identification equation is solved by sparse regularization algorithm,and the nonzero entries in the solution indicate damage locations and severities.The effectiveness and accuracy of the proposed method are verified through the laboratory test of a six-story lumped-mass shear building structure.The locations and severities of damages can be identified accurately.Compared with the traditional damage identification method,the identification accuracy is significantly improved.
作者 于虹 朱宏平 翁顺 宋晓东 杨国静 颜永逸 袁万城 党新志 YU Hong;ZHU Hongping;WENG Shun;SONG Xiaodong;YANG Guojing;YAN Yongyi;YUAN Wancheng;DANG Xinzhi(School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;China Railway Eryuan Engineering Group Co Ltd,Chengdu 610031,China;College of Civil Engineering,Tongji University,Shanghai 200092,China)
出处 《土木工程与管理学报》 2021年第3期107-112,118,共7页 Journal of Civil Engineering and Management
基金 国家自然科学基金(51922046,51838006) 中铁二院科学技术研究计划(KYY2019029(19-21) 中铁四院集团公司研究课题(2018D001)。
关键词 时间序列 ARMAX模型 稀疏正则化 损伤识别 time series ARMAX model sparse regularization damage identification
  • 相关文献

参考文献7

二级参考文献151

共引文献229

同被引文献40

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部