摘要
针对矿用电动机PD信号中含有大量的高斯白噪声信号这一问题,提出了一种基于VMD和SVD的去噪方法。首先利用VMD算法对含噪声的信号进行分解;然后由峭度准则挑选出符合要求的IMF分量,进行信号重构;最后再通过奇异值算法对VMD重构信号进行去噪处理,得到较为纯净的PD信号。由实验数据表明,通过以上方法对PD信号进行去噪处理后,所得PD信号的信噪比和均方误差效果更好,能更有效地去除矿用电动机PD信号中的高斯白噪声,达到了预期效果,具有一定的工程价值。
Aiming at the problem that there are a lot of Gauss white noise in PD signal of mine motor, a denoising method based on VMD and SVD is proposed. Firstly, the VMD algorithm is used to decompose the noisy signal. Then, the IMF component that meets the requirements is selected by the kurtosis criterion to reconstruct the signal. Finally, the VMD reconstructed signal is denoised by the singular value algorithm to obtain a relatively pure PD signal. The experimental data show that the signal-to-noise ratio and mean square error of the PD signal obtained by the above methods are better, and the Gaussian white noise in the PD signal of mine motor can be removed more effectively, which achieves the expected effect and has certain engineering value.
作者
李长江
刘广朋
Li Changjiang;Liu Guangpeng(Henan Tiantong Electric Power Co.,Ltd.,Pingdingshan 467000,China)
出处
《电子测量技术》
北大核心
2021年第6期42-46,共5页
Electronic Measurement Technology
关键词
矿用电动机
VMD
峭度准则
奇异值分解
mine motor
VMD
kurtosis criterion
singular value decomposition