期刊文献+

多维元数据索引文件系统设计与实现

Research and Implementation of Multi-dimensional Meta-data Indexing File System
下载PDF
导出
摘要 容量庞大的磁盘外部存储设备导致文件检索性能下降,传统的“按名检索”方法已经无法满足海量文件系统检索需求,面向近些年流行的多维索引技术,应用R树设计和实现一个基于文件属性的多维元数据索引文件系统MIFS,分析了MIFS目录树多属性索引结构和插入、删除、分裂操作算法,阐述了MIFS索引结构的物理实现及其用户接口,最后,实验测试了MIFS和Ext 3文件系统用户接口的周转时间,结果表明MIFS文件检索性能得到了显著提高。 Huge capacity of disk storage device descends the file searching performance and traditional method of searching by name couldn’t satisfied the demand of file system.Combined with the popular multi-dimension indexing technology in recent years,a kind of multi-dimension meta-data indexing file system named MIFS is designed and realized based on R-tree.Multi-properties index structure of file system directory tree and operating algorithms which include insert,delete,split are analyzed.Physical realization of index structure and user interface are discussed.In the end,the turnaround time of MIFS user interface operations is compared with Ext3 file system user interface operations and the test result shows that the file searching performance of MIFS is substantially improved.
作者 史军勇 李文静 SHI Jun-yong;LI Wen-jing(Zhengzhou Institute of Aeronautical Industry Management,Zhengzhou 450046,China)
出处 《电脑知识与技术》 2021年第16期26-29,共4页 Computer Knowledge and Technology
关键词 多维元数据索引 文件系统 R树 降维 用户接口 multi-dimension meta-data index file syste R-tree dimension reduction user interface
  • 相关文献

参考文献3

二级参考文献16

  • 1Christian Bohm.Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases [J] . ACM Computing Surveys, 2001, 33(3) .
  • 2Christian M. Garcia-Arellano. Quantization Techniques for Similarity Search in High-Dimensional Data Spaces [ D] . Ph. D thesis. Toronto : University of Toronto. 2002.
  • 3Gonzalo Navarro. Searching in metric spaces by spatial approximation [J] . The VLDB Journal 2002, 11 : 28-46.
  • 4Jinhua Li. Efficient similarity search based on data distribution properties in high dimensions [ D ] . Ph. D thesis. Michigan: Michigan State University. 2001.
  • 5R. Weber, H. J. Scheck, S. Blott. A quantitative analysis and performance study for similarity search in high dimensional spaces [ C ] //Proceedings of the 24th International Conference on Very Large Data Bases (VLDB'98), NewYork, USA, 1998: 194-205.
  • 6Stefan Berchtold, Christian Bohm, H V Jagadish. Independent Quantization: An Index Compression Technique for High-Dimensional Data Spaces [C]// San Diego: Proc. of the 16th Int. Conf. on Data Engineering ( ICDE '00) , Ca California: IEEE Computer Science Society Press. California, USA 2000: 577 -588.
  • 7Plesea L. Remote Access to Very Large Image Repositories, A High Performance Computing Perspective[C]//Proc. of ESTC’05. [S. l.]: IEEE Press, 2005.
  • 8Hulen H, Graf O, Fitzgerald K, et al. Storage Area Networks and the High Performance Storage System[C]//Proc. of the 10th NASA Goddard Conference on Mass Storage Systems and Technologies. College Park, USA: [s. n.], 2002.
  • 9Barroso L A, Dean J, Holzle U. The Google Cluster Architecture[M]. [S. l.]: IEEE Computer Society, 2003.
  • 10Ghemawat S, Gobioff H, Shun T L. The Google File System[C]//Proc. of the 19th ACM Symposium on Operating Systems Principles. New York, USA: [s. n.], 2003.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部