期刊文献+

数据驱动梯度结构材料弹塑性本构 被引量:6

Data-driven Elastoplastic Constitutive Model for Gradient Structure Materials
原文传递
导出
摘要 梯度结构材料因其优异的力学性能被广泛应用于工程结构中.论文整合塑性理论和人工神经网络技术,发展了一种构建梯度结构材料弹塑性本构模型的新方法.该方法基于梯度结构材料不同位置的微结构,构建不同代表性体积单元,进而生成应力应变数据,应用生成的数据训练人工神经网络,建立基于神经网络的材料本构模型.应用该方法,论文开展了针对实际工程结构件的计算,算例结果表明,该方法可快速计算梯度功能复合材料在循环载荷反向载荷状态下的宏观响应,且较为准确.该方法为模拟含复杂梯度结构材料的结构件弹塑性力学响应提供了新的工具. Gradient structure materials are widely used in engineering applications due to their excellent mechanical properties.However,because their compositions or microstructures vary gradually with spatial positions and the related mechanical properties,the simulation of engineering structures containing such materials often faces great challenges,which further limits their applications.In order to simulate this kind of materials,the present work proposes a new approach to construct the elastoplastic constitutive law of gradient structure materials by integrating the plastic theory and machine learning technology.The proposed approach first builds different representative volume elements(RVE)based on the microstructures at different positions to generate homogenized stress-strain data numerically,and then trains an artificial neural network(ANN)through the generated data.Then the trained ANN can be used as the homogenized elastoplastic material model for the gradient structure materials,replacing the yield function in conventional plasticity.The obtained homogenized material model is implemented through UMAT interface of ABAQUS for ease of use.The illustrative example shows that the constitutive model constructed by the presented approach can be used to solve the boundary value problems involving elastoplastic materials with gradient structure under complex loading paths(e.g.,cyclic/reverse loading)effectively.Compared with the results of direct numerical simulation on the gradient microstructure,the accuracy of the proposed approach in computing the macroscopic mechanical response is verified,but the degree of freedom of the engineering structure and the computational cost are greatly reduced.This approach provides a new way for computing the elastoplastic macroscopic mechanical response of structure involving complex gradient structure materials.At present,the approach can only be used for materials with isotropic hardening and meeting the associated flow law.Further research is needed to overcome these issues.
作者 杨航 李丽坤 刘道平 唐山 郭旭 Hang Yang;Likun Li;Daoping Liu;Shan Tang;Xu Guo(Department of Engineering Mechanics,Dalian University of Technology,Dalian.116023;State Key Laboratory of Structural Analysis for Industrial Equipment,Dalian,116023)
出处 《固体力学学报》 CAS CSCD 北大核心 2021年第3期233-240,共8页 Chinese Journal of Solid Mechanics
基金 国家重点研发计划(2016YFB0201601) 国家自然科学基金委面上项目(11872139)资助。
关键词 梯度结构材料 人工神经网络 弹塑性本构 代表性体积单元 gradient structure materials artificial neural network elastoplastic constitutive law representative volume element
  • 相关文献

参考文献2

二级参考文献68

共引文献118

同被引文献36

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部