期刊文献+

BiPO_(4)-BiOIO_(3)复合物的水热合成及其光催化降解染料研究 被引量:1

Hydrothermal Synthesis of BiPO_(4)-BiOIO_(3) Composite and Its Photocatalytic Degradation of Dyes
下载PDF
导出
摘要 采用一步水热法合成了BiPO_(4)-BiOIO_(3)复合物,并进行了FT-IR、XRD、SEM、XPS、UV-DRS等表征。以不同类型的有机染料罗丹明B(RhB)、甲基橙(MO)和亚甲基蓝(MB)为污染模型,考察了BiPO_(4)-BiOIO_(3)的光催化降解性能。在模拟太阳光照射下,染料的浓度和用量分别为10 mg·L^(-1)、50 mL,催化剂用量为50 mg,照射40 min时,MB被完全降解,照射50 min时,RhB和MO均被完全降解。BiPO_(4)-BiOIO_(3)的光催化机理实验表明,·O_(2)和h+是主要的活性物种。循环实验中,第五次循环时降解率仍有83.5%,表明BiPO_(4)-BiOIO_(3)具有较好的稳定性,具有可重复利用价值。 BiPO_(4)-BiOIO_(3) composite is synthesized by one-pot hydrothermal method and characterized by FT-IR,XRD,SEM,XPS and UV-DRS.The photocatalytic performance of BiPO_(4)-BiOIO_(3) is investigated by employing different types of organic dyes as pollution model,including Rhodamine B(RhB),methyl orange(MO)and methylene blue(MB).Under the irradiation of simulated solar light,MB is completely degraded after 40 min of irradiation while RhB and MO are completely degraded after 50 min when the concentration and dosage of dye is 10 mg·L^(-1) and 50 mL respectively,and the dosage of photocatalyst is 50 mg.The photocatalytic mechanism experiment of BiPO_(4)-BiOIO_(3) shows that·O_(2)^(-) and h+are the main active species.In the cycle experiment,the degradation rate still reaches 83.5%in the fifth cycle,indicating the good stability and reusable value of BiPO_(4)-BiOIO_(3) composite.
作者 王清 周娅芬 朱世侦 WANG Qing;ZHOU Yafen;ZHU Shizhen(Key Laboratory of Chemical Synthesis and Pollution Control of Sichuan Province,China West Normal University,Nanchong Sichuan 637009,China)
出处 《西华师范大学学报(自然科学版)》 2021年第2期152-157,共6页 Journal of China West Normal University(Natural Sciences)
基金 南充市科技计划项目(19YFZJ0107) 西华师范大学青年教师科研资助项目(19D038)。
关键词 BiPO4-BiOIO3 水热合成 光催化降解 有机染料 BiPO4-BiOIO3 hydrothermal synthesis photocatalytic degradation organic dye
  • 相关文献

参考文献2

二级参考文献39

  • 1邢精成,卞建江,杨建华,黄富强.SrNb_2O_6和SrNb_2O_6/Nb_2O_5复合物光催化降解甲基橙的研究[J].无机材料学报,2007,22(5):927-930. 被引量:6
  • 2Vincenzo, B.; Alberto, C.; Margherita, V. ChemSusChem 2008, 1 (1-2), 26.
  • 3Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Chem. Rev. 2010, 110 (11), 6503. doi: 10.1021/cr1001645.
  • 4Matsumoto, Y. J.; Koinuma, H.; Ohsawa, T. J. Phys. Chem. C 2007, 111 (28), 10523. doi: 10.1021/jp072365c.
  • 5Nathaniel, L. H.; Jaewook, B. Chem. Mater. 2007, 19, 1883 doi: 10.1021/cm062934d.
  • 6Yu, K.; Yang, S. G.; Liu, C.; Chen, H. Z.; Li, H.; Sun, C.; Stephen, A. B. Environ. Sci Technol. 2012, 46 (13), 7318. doi 10.1021/es3001954.
  • 7Zou, Z. G.; Ye, J. H.; Kazuhiro, S.; Hironori, A. Nature 2001, 414, 625. doi: 10.1038/414625a.
  • 8Shi, R.; Wang, Y. J.; Li, D.; Xu, J.; Zhu, Y. F. Applied Catalysis B: Environmental 2010, 100, 173.
  • 9Li, D.; Shi, R.; Pan, C. S.; Zhu, Y. F.; Zhao, H. J. CrystEngComm 2011, 13, 4695.
  • 10Zhang, S. C.; Zhang, C.; Man, Y.; Zhu, Y. E dournal of Solid State Chemistry 2006, 179 (1), 62. doi: 10.1016/j. jssc.2005.09.041.

共引文献26

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部