期刊文献+

二元混合物中的热传导方程解的爆破现象 被引量:4

The Blow-Up Phenomenon of Solutions of Heat Conduction Equation In Binary Mixtures
原文传递
导出
摘要 考虑了定义有界凸区域上二元固体混合物中的热传导方程,其中在区域的边界上满足局部非线性条件.通过对非线性条件以及初始值做适当限制,利用能量估计的方法,得到了爆破发生时爆破时间的下界.并且找到了解在有限时刻一定发生爆破的条件,得到了爆破时间的上界. The heat conduction equation in a binary solid mixture on a bounded convex domain is considered,in which the local nonlinear conditions are satisfied on the boundary of the domain.By properly limiting the nonlinear conditions and the initial value,the lower bound of the blow-up time is obtained by using the method of energy estimation.The conditions that the blow up must occur at a finite time are found and the upper bound of blow-up time is obtained.
作者 陈雪姣 李远飞 CHEN Xue-jiao;LI Yuan-fei(School of Data Science,Guangzhou Huashang College,Guangzhou 511300,China)
出处 《数学的实践与认识》 2021年第11期257-264,共8页 Mathematics in Practice and Theory
基金 广东省普通高校重点项目(自然科学)(2019KZDXM042) 广东省普通高校青年创新人才项目(2018KQNCX379)。
关键词 二元热量方程 爆破 上界 binary heat equations blow up upper bound
  • 相关文献

二级参考文献21

  • 1Jager W, Luckhau S. On explosions of solutions to a system of partial differential equations modeling chemotaxis. Transactions American Mathematical Society, 1992, 329:819-824.
  • 2Payne L E, Song J C. Blow-up and decay criteria for a model of chemotaxis. Journal of Mathematical Analysis and Applications, 2010, 367: 1-6.
  • 3Ball J M. Remarks on blow up and nonexistence theorems for nonlinear evolution equations. Quart Journal Mathematical Oxford, 1977, 28:473-486.
  • 4Caffarrelli L A, Friedman A. Blow-up of solutions of nonlinear heat equations. Journal of Mathe- matical Analysis Applications, 1988, 129:409-419.
  • 5Friedman A, Mcleod B. Blow-up of positive solutions of semilinear heat equations. Indiana University Mathenatics Journal. 1985, 34:425-447.
  • 6Levine H A. Nonexietence of global weak solutions to some properly and improperly posed problems of mathematical physics: the method of unbounded Fourier coefficients. Applicable Analysis, 1975, 214:205-220.
  • 7Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Dirichlet conditions. Journal of Mathematical Analysis and Applications, 2007, 328:1196-1205.
  • 8Payne L E, Philippin G A, Schaefer P W. Blow-up phenomena for some nonlinear parabolic problems. Nonlinear Analysis, 2008, 69:3495-3502.
  • 9Payne L E, Schaefer P W. Lower bounds for blow-up time in parabolic problems under Neumann conditions. Applicable Analysis, 2006, 85(10): 1301-1311.
  • 10Gao Xuyan, Ding Juntang, Guo Baozhu. Blow-up and global solutions for quasilinear parabolic equations with Neumann boundary conditions. Applicable Analysis, 2009, 88(2): 183-191.

共引文献37

同被引文献20

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部