期刊文献+

基于GAN的BNCT放疗剂量预测方法及影响因素 被引量:1

BNCT Dose Prediction Method Based on Generative Adversarial Network and Influencing Factor Analysis
下载PDF
导出
摘要 硼剂量是硼中子俘获治疗中实际治疗剂量的重要组成,实现治疗过程中硼剂量实时分布的测量对保证治疗效果至关重要。但目前临床上对硼剂量的监测还缺少切实可行的方法。据此,本文提出利用生成式对抗网络(GAN)根据治疗过程中探测到的478 keV瞬发伽马射线的三维分布预测实时硼剂量三维分布。本研究基于具有中国人生理特征的辐射仿真人体模型,构建了19个脑胶质瘤病例,利用蒙特卡罗方法模拟了头顶照射方案下瞬发伽马射线及硼剂量三维分布,其中15个病例样本作为训练集,4例作为测试集。结果表明,对于复杂肿瘤结构及复杂硼分布的病例,GAN预测结果与蒙特卡罗模拟结果的SSIM系数均约为0.98,表明本方法可实现硼剂量三维分布的准确预测。 Boron dose is an important component of the actual therapeutic dose of boron neutron capture therapy(BNCT).In order to accurately evaluate the actual therapeutic effect of BNCT,it is important to know the real-time distribution of boron dose during the treatment.However,there is still a lack of practical methods for monitoring boron dose in clinical.Accordingly,this work proposed for the first time using generative adversarial network(GAN)to predict the real-time three-dimensional distribution of boron dose based on the three-dimensional distribution detected during treatment.Based on an anthropomorphic male phantom with Chinese phy-siological features,19 cases of glioma were constructed for analysis basing Monte Carlo simulations.The results show that this boron dose prediction method based on GAN can achieve quantitative prediction of the three-dimensional distribution.The value of SSIM between the results generated by Monte Carlo simulation and GAN are all about 0.98 within complex tumor structure and non-uniform distribution of boron concentration in the target area.
作者 田锋 耿长冉 邬仁耀 赵胜 刘缓 汤晓斌 TIAN Feng;GENG Changran;WU Renyao;ZHAO Sheng;LIU Huan;TANG Xiaobin(Department of Nuclear Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China;Key Laboratory of Nuclear Technology Application and Radiation Protection in Astronautic(Nanjing University of Aeronautics and Astronautics),Ministry of Industry and Information Technology,Nanjing 211106,China;Joint International Research Laboratory on Advanced Particle Therapy,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2021年第S01期158-164,共7页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(11905106,11975123) 江苏省自然科学基金资助项目(BK20190410)。
关键词 硼中子俘获治疗 硼剂量 瞬发伽马射线 生成式对抗网络 boron neutron capture therapy boron dose prompt gamma ray generative adversarial network
  • 相关文献

参考文献4

二级参考文献35

  • 1王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:332
  • 2王飞跃.计算实验方法与复杂系统行为分析和决策评估[J].系统仿真学报,2004,16(5):893-897. 被引量:147
  • 3佟雨兵,胡薇薇,杨东凯,张其善.视频质量评价方法综述[J].计算机辅助设计与图形学学报,2006,18(5):735-741. 被引量:47
  • 4王飞跃.关于复杂系统的建模、分析、控制和管理[J].复杂系统与复杂性科学,2006,3(2):26-34. 被引量:64
  • 5周永茂.硼中子俘获疗法(BNCT)争议中的五对问题[J].清华大学学报:自然科学版,2000,40(3):11-11.
  • 6Barth RF,Soloway AH,Fairchild RG.Boron N-eutron Capture Therapy for Cancer[J].Sci Am,1990,263:103,106-107.
  • 7Hatanaka H,Nakagawa Y.Clinical Results of L-ong-surviving Brain Tumor Patients Who Underwent Boron Neutron Capture Therapy[J].Int J Radiat Oncol Biol Phys,1994,28:1 061-1 066.
  • 8Nakagawa Y,Hatanaka H.Boron Neutron Capture Thearpy Clinical Brain Tumor Studies[J].J Neurooncol,1997,33:105-115.
  • 9Packer S,Coderre J,Saraf S,et al.Boron Neutron Capture Therapy of Anterior Chamber Melanoma With p-boronophenylalanine[J].Invest Ophthalmol Vis Sci,1992,33:395-403.
  • 10Novick S,Quastel MR,Marcus S,et al.Linkage of Boronated Polylysine to Glycoside Moieties of Polyclonal Antibody; Boronated Antibodies as Potential Delivery Agents for Neutron Capture Therapy[J].Nucl Med Biol,2002,29:159~167.

共引文献365

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部