期刊文献+

广义变系数Kadomtsev-Petviashvili方程的孤子解

Soliton Solution for the General Variable-Coefficient Kadomtsev-Petviashvili Equation
下载PDF
导出
摘要 借助多元变换技巧,将广义变系数Kadomtsev-Petviashvili方程约化为常系数(2+1)维Kadomtsev-Petviashvili方程,基于Hirota双线性方法,按照Wronskian技巧,可以得到常系数Kadomtsev-Petviashvili方程的精确解,再运用多元变换,构造出广义变系数Kadomtsev-Petviashvili方程一般化的单孤子解、双孤子解以及N孤子解,并且展示出单、双孤子解的非线性动力学过程,这将有助于理解孤波的演化发展. With the help of the multivariate transformation technique,the general variablecoefficient Kadomtsev-Petviashvili equation is reduced to constant-coefficient(2+1)dimensional Kadomtsev-Petviashvili equation,based on the Hirota bilinear method,the exact solutions of constant-coefficient Kadomtsev-Petviashvili equation were obtained according to Wronskian technique,then using the multivariate transformation,the generalised one-soliton solutions、two-soliton solutions and N-soliton solutions of the general variable-coefficient Kadomtsev Petviashvili equation are presented,and the nolinear dynamics process of the one-and two-soliton solutions are showed which can help us better understand the evolution of soliton waves.
作者 郭婷婷 GUO Tingting(Shanxi Vocational University of Engineering Science and Technology,Taiyuan 030619,China)
出处 《太原师范学院学报(自然科学版)》 2021年第2期20-24,共5页 Journal of Taiyuan Normal University:Natural Science Edition
基金 山西大学商务学院科研基金(2020040).
关键词 广义变系数Kadomtsev-Petviashvili方程 多元变换技巧 HIROTA双线性方法 孤子解 general variable-coefficient Kadomtsev-Petviashvili equation multivariate transformation technique Hirota bilinear method soliton solution
  • 相关文献

参考文献4

二级参考文献54

  • 1ZHANG Yu-Feng,Tam Honwah,ZHAO Jing.Higher-Dimensional KdV Equations and Their Soliton Solutions[J].Communications in Theoretical Physics,2006,45(3):411-413. 被引量:12
  • 2W.X. Ma and B. Fuchssteiner, Chaos, Solitons and Frac- tals 7 (1996) 1227.
  • 3W.X. Ma, Methods Appl. Anal. T (2000) 21.
  • 4Y.F. Zhang and H.Q. Zhang, J. Math. Phys. 43 (2002) 466.
  • 5W.X. Ma, X. Xu, and Y.F. Zhang, Phys. Lett. A 351 (2006) 125.
  • 6W.X. Ma, X. Xu, and Y.F. Zhang, J. Math. Phys. 47 (2006) 053501.
  • 7W.X. Ma and M. Chen, J. Phys. A: Math. Gem 39 (2006) 10787.
  • 8W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055.
  • 9W.X. Ma, J. Math. Phys. 46 (2005) 033507.
  • 10Y.F. Zhang and E.G. Fan, Phys. Lett. A 248 (2006) 180.

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部