期刊文献+

一类食饵具有收获率的带功能反应的捕食模型定性分析 被引量:1

A Qualitative Analysis for a Holling Ⅲ Predator-prey Model with Harvesting Rate
下载PDF
导出
摘要 对一类食饵具有常数收获率且带有HollingⅢ功能反应的捕食模型进行了研究.通过运用定性分析和Dulac函数法,讨论了模型的正平衡点稳定性、极限环的存在性,得到了平衡点存在条件. A class of predator-prey of HollingⅢmodel with linear density restriction on both predator and prey is analyzed.The stability of the unique positive equilibrium and the existence of limit cycle are investigated,including the stability of infinity.By using qualitative theory of differential equation,We obtain the conditions of the unique positive equilibrium.
作者 张蓬霞 ZHANG Pengxia(Department of Mathematics,Changzhi University,Changzhi 046011,China)
机构地区 长治学院数学系
出处 《太原师范学院学报(自然科学版)》 2021年第2期33-35,共3页 Journal of Taiyuan Normal University:Natural Science Edition
基金 数学系非师范专业《常微分方程》课程教学改革与实践教学研究(JC201913).
关键词 收获率 捕食模型 正平衡点 harvesting rate predator-prey model positive equilibrium
  • 相关文献

参考文献2

二级参考文献14

  • 1肖海滨.双密度制约的Holling Ⅱ型捕食动力系统的定性分析[J].生物数学学报,2006,21(3):334-340. 被引量:12
  • 2张娟,马知恩.一类具有HollingⅡ类功能反应且两种群均有密度制约项的捕食系统极限环的唯一[J].生物数学学报,1996,11(2):26-30. 被引量:14
  • 3CHEN Lan,WANG Wen-di. Qualitative analysis of a predator prey model with Holling type Ⅱ functional response incorporating a constant prey refuge[J].Nonlinear Analysis:Real Word Applications,2010.246-252.
  • 4LIAN Fu,XU Yi. Hopf bifurcation analysis of a predator prey system with Holling type Ⅳ functional response[J].Applied Mathematics and Computation,2009.1484-1495.
  • 5DAI Bu,ZOU Jia. Periodic solutions of a discrete-time delay nonautonomous predator prey model with the Beddington-Deangelis functional response[J].Journal of Applied Mathematics and Computing,2007,(01):127-139.
  • 6UPADHYAY R K,NAJI. Dynamics of a three species food chain model with Crowley-Martin type functional response[J].Chaos,Solitons and Fractals,2009.1337-1346.
  • 7XIA Yu. Periodic solutions of a neutral impulsive delayed Lotka-Volterra competition system with the effect of toxic substance[J].Nonliear Analysis:Real Word Applications,2007.204-221.
  • 8LIU Xia,HAN Mao-an. Chaos and Hopf bifurcation analysis for a two species predator prey system with prey refuge and diffusion[J].Nonliear Analysis:Real Word Applications,2011.1047-1061.
  • 9KAR T K. Modelling and analysis of a harvested predator prey system incorporating a prey refuge[J].Journal of Computational and Applied Mathematics,2006.19-33.
  • 10LIU Bing,ZHANG Yu-juan,CHEN Lan-sun. Dynamic complexities of a HollingI predator-prey model concerning periodic biological and chemical control[J].Chaos,Solitons and Fractals,2004.123-134.

共引文献7

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部