期刊文献+

基于车牌大数据的车辆管控政策制定方法研究--以广州为例 被引量:2

Research on The Vehicle Management Policy Making Based on Plate Big Data:Taking Guangzhou as an Example
下载PDF
导出
摘要 传统的车辆管控政策主要以定性分析为准,但随着信息技术的发展,交通大数据越来越丰富,基于交通大数据可以定量化分析车辆管控政策。针对各种类型的车辆提出相应的车辆管控措施,形成车辆管控政策体系;进一步以卡口车牌大数据为基础,提出全过程定量化辅助车辆管控政策制定的方法,包括在政策实施前发现及分析问题、政策制定中辅助及预估效果、实施后评估效果等。最后以广州外市籍车辆“开四停四”管控政策为例,全过程说明车牌大数据的应用,验证说明技术方法的科学有效性。 The traditional vehicle management policy is mainly based on qualitative analysis,but with the development of information technology,traffic big data is becoming more and more abundant.Based on the traffic big data,the vehicle management policy can be analyzed quantitatively.For various types of vehicles,the corresponding vehicle management measures are proposed to form a vehicle management policy system;further,based on the plate big data,the whole process quantitative auxiliary vehicle management policy formulation method is proposed,including finding and analyzing problems before the implementation of the policy,assisting and estimating the effect in the policy formulation,and evaluating the effect after the implementation.Finally,taking the Guangzhou management policy of"four driving,four stopping"for vehicles from other cities as an example,the application of plate big data is illustrated in the whole process,and the scientific effectiveness of the technical method is verified.
作者 郑淑鉴 佘文晟 胡少鹏 Zheng Shujian;She Wensheng;Hu Shaopeng
出处 《交通与港航》 2021年第3期73-78,共6页 Communication & Shipping
关键词 交通管理 车牌大数据 车辆管控 政策制定 全过程辅助 Traffic management Plate big data Vehicle management Policy making Whole process assistance
  • 相关文献

参考文献4

二级参考文献24

  • 1杨晓光,蔡润林,庄斌.基于车牌自动识别系统的城市道路行程时间预测算法[J].交通与计算机,2005,23(3):29-32. 被引量:12
  • 2ZHOUXK.Studyof new application of vehicle license recognition in ITS[D]. Nanjing : Nanjing University of Posts and Telecommunications, 2008.
  • 3MAX L, Haris N Koutsopoulos. A new online travel time estimation approach using distorted automatic vehicle identification data[C]// Intelligent Transportation Systems, ITSC 2008, llth International IEEE Conference on. IEEE, 2008: 204-209.
  • 4LIXL,SHIJJ.Studyinoddvaluesprocessmethod of travel time[J]. Journal of Wuhan University of Teehnology (Transportation Scienee & Engineering), 2012, 36(1): 116-119.
  • 5SUNJ,FENGY.AnewmethodofODestimation based on automatic vehicle identification data[J]. Journal of Tongji University (Natural Science), 2011, 39(12):1801-1804.
  • 6Stinson D R. Cryptography: Theory and practice[M]. CRC Press, 2005.
  • 7ZHOUSB.Researchand application on determining optimal number of clusters in cluster analysis[D]. Wuxi: Jiangnan University, 2011.
  • 8Calinski T, Harabasz J. A dendrite method for cluster analysis[J]. Communications in Statistics-theory and Methods, 1974, 3(1),: 1-27.
  • 9LI Zhi-Peng,YU Hong,LIU Yun-Cai,LIU Fu-Qiang.An Improved Adaptive Exponential Smoothing Model for Short-term Travel Time Forecasting of Urban Arterial Street[J].自动化学报,2008,34(11):1404-1409. 被引量:7
  • 10林瑜,陈红洁,肖永来.基于车牌识别的交通分析应用研究[J].中国交通信息产业,2009(5):101-102. 被引量:6

共引文献25

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部