摘要
为了提高医院门诊信息化网络的安全性,需要进行网络安全态势感知,构建大规模医院门诊信息化网络安全态势感知模型。进行网络安全态势的分布式融合和特征挖掘,构建感知信息采集和融合模型,提取信息统计特征量,通过空间信息融合聚类分析方法,进行信息化网络安全态势特征分解和信息聚类,通过能量泛函和数据聚类分析方法,进行大规模医院门诊信息化网络安全态势感知和入侵检测。实验结果表明,采用该方法进行大规模医院门诊信息化网络安全态势感知的信息融合度水平较高,特征辨识能力较强,提高了大规模医院门诊信息化网络安全性。
In order to improve the security of hospital outpatient information network,it is necessary to carry out network security situation awareness,and build a large-scale hospital outpatient information network security situation awareness model.The distributed fusion and feature mining of network security situation are carried out to construct the perceptual information collection and fusion model,which then extract the information statistical feature quantity.The network security situation feature informatization decomposition and information clustering are carried out by the method of spatial information fusion clustering analysis.The large-scale hospital outpatient information network security situation awareness and intrusion detection is made possible by energy functional and data clustering analysis method.The experiment results show that the information fusion level and feature recognition ability of the method are better,which improve the network security of large-scale hospital outpatient informatization.
作者
马翔明
穆炜
董文清
MA Xiang-ming;MU Wei;DONG Wen-qing(Tianjin Medical University Cancer Institute and Hospital,Tianjin 300060,China)
出处
《信息技术》
2021年第6期91-95,共5页
Information Technology
关键词
大规模医院门诊
信息化网络
安全态势感知
谱特征提取
largescale hospital outpatient
information network
security situation awareness
spectrum feature extraction