期刊文献+

基于LSSVM建模和AFSA算法的燃气轮机燃烧优化 被引量:1

Combustion optimization of gas turbine based on LSSVM model and AFSA algorithm
下载PDF
导出
摘要 针对当前我国燃气轮机建模存在的方法匮乏、燃烧调整策略不足等问题,提出了一种燃气轮机建模方法,该方法基于最小二乘法支持向量机(LSSVM),对燃气轮机燃烧室压力波动和NOx排放值进行建模,再通过人工鱼群优化算法,对所建模型进行优化。仿真结果表明,LSSVM方法对燃气轮机燃烧室压力波动和NOx排放值建模误差分别为0.397%和1.142%,人工鱼群算法对模型的优化值分别为0.485%和0.874%,基本满足建模优化要求,为燃气轮机建模与优化调整提供参考。 Due to the shortage of methods and combustion adjustment strategies in gas turbine modeling in China,a gas turbine modeling method is proposed based on the least squares support vector machine(LSSVM).The pressure fluctuation and the NOx emission value of gas turbine combustor are modeled,and the artificial fish swarm optimization algorithm is employed to optimize the model.The simulation results show that the model errors based on the LSSVM method for the pressure fluctuation and the NOx emission value of gas turbine combustion chamber are 0.397%and 1.142%respectively,and the optimized values by the artificial fish swarm algorithm are 0.485%and 0.874%respectively,which basically meet the requirements of model optimization,and provide references for gas turbine modeling and optimization.
作者 钟帆 茅大钧 汤诚 孙道万 ZHONG Fan;MAO Dajun;TANG Cheng;SUN Daowan(College of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China;Operation Department,Hangzhou Huadian Jiangdong Thermal Power Co.,Ltd.,Hangzhou 310000,China)
出处 《上海电机学院学报》 2021年第3期155-161,共7页 Journal of Shanghai Dianji University
基金 上海市“科技创新行动计划”地方院校能力建设专项资助项目(19020500700) 中国华电集团有限公司2019年度重点科技资助项目(CHDKJ19-01-80)。
关键词 燃气轮机建模 最小二乘法支持向量机(LSSVM) 人工鱼群优化算法 gas turbine modeling least squares support vector machine(LSSVM) artificial fish swarm optimization algorithm
  • 相关文献

参考文献11

二级参考文献51

共引文献77

同被引文献24

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部