摘要
基于1990—2016年贵州老龄人口数和老龄化率数据,先分析贵州目前人口老龄化现状,再通过线性回归模型和ARIMA模型预测贵州省2017—2022年老龄人口数和老龄化率并比较二者在不同模型下的模拟优度,最后利用主成分回归分析法探究贵州人口老龄化的影响因子.研究得出:(1)1990—2016年贵州省人口老龄化速度加快,同时各市州及各少数民族的人口老龄化差异明显,民族自治地区分散老龄化严重;(2)ARIMA模型与线性回归模型对2017—2022年的老龄人口预测存在明显差别,但对老龄化率的预测保持一致趋势,老龄化率将由10.28%升至11.61%,社会渐趋向中度老龄化转变,预计在2049年进入中度老龄化社会(>20%);(3)经济、医疗、城镇化、人口素质和人口资本的提升对人口老龄化有显著的推动作用,进入人口和退出人口的变化对人口老龄化有倒抑作用.
Based on the data on the aging population and aging rate of Guizhou from 1990 to 2016,based on the current status of aging population in Guizhou,the number of aging population and aging rate in Guizhou Province from 2017 to 2022 was predicted through linear regression model and ARIMA model and the Simulation goodness of the two under different models was compared,and finally by use of principal component regression analysis,the influencing factors of population aging in Guizhou were determined.The study finds that:(1)The population aging rate in Guizhou Province accelerated in 1990—2016.At the same time,the population aging of the prefecture-level cities and the ethnic minorities in the province was significantly different.The scattered aging in ethnic autonomous regions was rather grave.(2)The ARIMA model differs significantly from the linear regression model in the prediction of the aging population in 2017—2022,but the prediction of the aging rate between the two was consistent.The aging rate will increase from 10.28%to 11.61%,and the population gradually becomes moderately aged.The transformation is expected to enter a moderately aging society(>20%)in 2049.(3)The advances in economy,medical care,urbanization,population qualities and population capital have an obvious prompting effect on population aging and changes in input-and output-population have a depressing effect on population aging.
作者
应奎
李旭东
YING Kui;LI Xudong(School of Geography and Environmental Science, Guizhou Normal University, Guiyang, Guizhou 550025, China)
出处
《内江师范学院学报》
CAS
2021年第6期50-58,107,共10页
Journal of Neijiang Normal University
基金
国家自然科学基金项目(41261039)。
关键词
人口老龄化
ARIMA模型
主成分回归分析法
贵州省
population aging
ARIMA model
principal component regression analysis
Guizhou Province