期刊文献+

Mars orbit insertion via ballistic capture and aerobraking

原文传递
导出
摘要 A novel Mars orbit insertion strategy that combines ballistic capture and aerobraking is presented.Mars ballistic capture orbits that neglect the aerodynamics are first generated,and are distilled from properly computed stable and unstable sets by using a pre-established method.A small periapsis maneuver is implemented at the first close encounter to better submit a post-capture orbit to the aerobraking process.An adhoc patching point marks the transition from ballistic capture to aerobraking,from which an exponential model simulating the Martian atmosphere and a box-wing satellite configuration are considered.A series of apoapsis trim maneuvers are then computed by targeting a prescribed pericenter dynamic pressure.The aerobraking duration is then estimated using a simplified two-body model.Yaw angle tuning cancels the inclination deflections owing to out-of-plane perturbation from the Sun.A philosophy combining in-plane and out-of-plane dynamics is proposed to simultaneously achieve the required semi-major axis and inclination.Numerical simulations indicate that the developed method is more efficient in terms of the fuel consumption,insertion safety,and flexibility when compared with other state-of-the-art insertion strategies.
出处 《Astrodynamics》 CSCD 2021年第2期167-181,共15页 航天动力学(英文)
基金 This work was supported by the National Natural Science Foundation of China(No.11602301) the Science and Technology Laboratory on Space Intelligent Control for National Defense(No.KGJZDSYS-2018-12) the National Key R&D Program of China(No.2019YFA0706601).
  • 相关文献

参考文献1

二级参考文献10

  • 1Lyons D T. Aerobraking at Venus and Mars: a comparison o{ the Magellan and Mars Global Surveyor aerobraking phases [C] // ASS/AIAA Astrodynamics Conference. Girdwood, Alaska, 1999.
  • 2Spencer D A, Tolson R. Aerobraking cost and risk decisions [J]. Journal of Spacecraft and Rockets, 2007, 44(6).. 1285- 1293.
  • 3Lyons D T, Beerer J G, Esposito P, et al. Mars Global Sur- veyor: aerobraking mission overview[J]. Journal of Space- craft and Rockets, 1999, 36(3): 307-313.
  • 4Smith J C, Bell J L. 2001 Mars Odyssey aerobraking[J].Journal of Spacecraft and Rockets, 2005, 42(3): 406 415.
  • 5Lyons D T. Mars Reconnaissance Orbiter: aerobraking refer- ence trajectory[C]//Proceedings of the AIAA/AAS Astrody- namics Specialist Conference and Exhibit. Monterey, Califor- nia, 2002.
  • 6Johnston M D, Esposito P B, Alwar V, et al. Mars Global Surveyor: aerobraking at Mars[C] // Spaceflight Mechanics: Proceedings of the AAS/AIAA Spaceflight Mechanics Meet- ing. Monterey, California, 1998: 205-223.
  • 7Sterne T. An introduction to celestial mechanics[M]. New York: Interscience Publishers Inc. , 1960 158-160.
  • 8Esposito P, Alwar V, Demcak S, et. al. Mars Global Survey- or navigation and aerobraking at Mars[C] // Spaceflight Dy- namics 1998: Proceedings of the Aas/Gsfc International Sym- posium on Space Flight Dynamics. Greenbelt, Maryland, 1998: 1011-1023.
  • 9Justus C G, Johnson D L. Mars global reference atmospheric model 2001 version ( Mars-GRAM 2001 ) : Users Guide, NASA/TM-2001-210961-NAS 1.15 : 210961[R], 2001.
  • 10Liu Lin, Zhao Yuhui, Zhang Wei, et al. Coordinate addition- al perturbations to Mars orbiters and choice of corresponding coordinate system[J]. Chinese Astronomy and Astrophysics, 2011, 35(2) 188-198.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部