期刊文献+

基于卷积神经网络的跨层融合边缘检测算法 被引量:7

Cross fusion edge detection algorithm based on CNN
下载PDF
导出
摘要 针对目前边缘检测算法因过于依赖全连接层,使得边缘线条粗糙,且损失函数设定不当,造成梯度消失和大量主要特征信息丢失等问题,提出了基于卷积神经网络的交叉融合边缘检测算法。该算法利用1×1多卷积核的梯度方式来降维,完成横纵向图像低级与高级特征对象的采集;然后通过自上而下和自左向右循环卷积流向方式,保证每层的损失函数可以较平稳地前向和反向传播;最后利用跨层交叉融合对图像边缘特征进行细化。实验结果表明,该算法在伯克利大学数据集(BSDS500)上最优数据集规模(ODS)F-measure为0.806,接近人类平均视觉感知。 Aiming at the problems that the current edge detection algorithms rely on the FC layer too much,making the edge line rough and the improper setting of the loss function,which make the gradient disappear and the main characteristics loss.To solve the two problems,this paper proposed a cross-layer fusion edge detection algorithm based on convolutional neural network.It used 1×1 multiple convolution kernels gradient method to reduce the dimension,and completed the acquisition of low-level and high-level feature objects of horizontal and vertical images.Then,the convolutional flowing direction was from top to bottom and from left to right,so that the loss function of each layer could be propagated forward and backward smoothly.Finally,it refined the image edge feature by cross-layer fusion.Experimental results show that ODS F-measure is 0.806 on BSDS500 dataset,which is close to human average visual perception.
作者 李翠锦 瞿中 Li Cuijin;Qu Zhong(College of Electronic Information,Chongqing Institute of Engineering,Chongqing 400060,China;College of Computer Science&Technology,Chongqing University of Posts&Telecommunications,Chongqing 400065,China)
出处 《计算机应用研究》 CSCD 北大核心 2021年第7期2183-2187,共5页 Application Research of Computers
基金 国家自然科学基金资助项目(61701060) 重庆市基础科学与前沿技术研究专项项目(cstc2017jcyjAX0007) 重庆工程学院高科技人才计划资助项目(2019gckv04) 重庆工程学院校内科研基金资助项目(2019xzky06) 重庆市教委科学技术研究青年项目(KJQN201901907) 重庆工程学院校内科研基金资助项目。
关键词 边缘检测 损失函数 交叉融合 VGG16 数据集 edge detection loss function cross fusion VGG16 dataset
  • 相关文献

参考文献2

二级参考文献71

  • 1贾慧星,章毓晋.车辆辅助驾驶系统中基于计算机视觉的行人检测研究综述[J].自动化学报,2007,33(1):84-90. 被引量:69
  • 2杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 3Geronimo D, Lopez A, Sappa A, et al. Survey of pedestrian de- tection for advanced driver assistance systems[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2010, 32 ( 7 ) : 1239- 1258.
  • 4Dollfr P,Wojek C,Schiele B,et al. Pedestrian detection:an e- valuation of the state of the art.IEEE, Trans. on Pattern Analysis and Machine InteUigence,2011,99:1 - 20.
  • 5Aggarwal J, Ryoo M. Human activity analysis: a review[J]. ACM Computing Surveys,2011,43(3),16:1-47.
  • 6Reilly V, Solmaz B, and Shah M. Geometric constraints for hu- man detection in aerial hnagery[ A] .In Proc. ECCV[C] ,2010.
  • 7Andfiluka M, Schnitzspan P, Meyer J, et al. Vision based victim detection from unmanned aerial vehicles [ A ]. In Proc. IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS) [ C]. Talpei, Taiwan, 2010.
  • 8Dollar P, Belongie S, Pemna P. The fastest pedeslrian detector in the west[A]. In Proc. BMVC[C] ,2010.
  • 9Enzweiler M, Gavrila D. Monocular pedestrian detection: sur- vey and experiments[ J]. IEEE, Trans. on Pattern Analysis and Machine Intelligence, 2009,31 (12) :2179 - 2195.
  • 10Dalai N, Tdggs B. I-listograms of oriented gradients for human detection[ A]. In Proc. 1EEE CVPR[ C], 2005,886 - 893.

共引文献163

同被引文献13

引证文献7

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部