期刊文献+

具有S-拟正规子群的有限群 被引量:2

Finite groups with S-quasinormal subgroups
下载PDF
导出
摘要 设G是有限群,H为G的子群.如果H与G的每一个Sylow子群可置换,即对任意的P∈Syl(G),有HP=PH,则称H在G中S-拟正规.称G的素数阶子群为G的极小子群.如果G的每个极小子群在G中S-拟正规,则称G是MS-群.首先给出每个极大子群皆为MS-群的有限群必可解的新证明;然后确定了每个二极大子群皆为MS-群的有限非交换单群. Let G be a finite group.A minimal subgroup of G is a subgroup of prime order.A subgroup of G is called S-quasinormal in G if it permutes with each Sylow subgroup of G.A group G is called a MS-group if each minimal subgroup of G is S-quasinormal in G.In this paper,we give a new proof on the solvability of finite groups,all of whose maximal subgroups are MS-groups.Furthermore,we determine the finite non-abelian simple groups,all of whose second maximal subgroups are MS-groups.
作者 邓燕 孟伟 DENG Yan;MENG Wei(School of Mathematics and Computer Science,Yunnan Minzu University,Kunming 650500,China;School of Mathematics and Computational Science,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《云南民族大学学报(自然科学版)》 CAS 2021年第4期355-358,共4页 Journal of Yunnan Minzu University:Natural Sciences Edition
基金 国家自然科学基金(11761079).
关键词 极大子群 S-拟正规子群 可解群 单群 maximal subgroup S-quasinormal subgroup solvable group simple group
  • 相关文献

参考文献3

二级参考文献12

  • 1HALL P.A contribution to the theory of prime power order[J].Proc London Math Soc,1933,36(2):29-95.
  • 2BUTER L M.A unimodality result in the enumeration of subgroups of finite abelian group[J].Proc Amer Math Soc,1987,101:771-775.
  • 3TAKEGAHARA Y.On the frobenius numbers of symmetric groups[J].Journal of Algebra,1999,221:551-561.
  • 4TAKEGAHARA Y.The number of subgroups of a finite group[J].Journal of Algebra,2000,227:783-796.
  • 5LI Shi-rong,ZHAO Xu-bo.Finite groups with Few non-cyclic subgroups[J].Journal of Group Theory,2007,10:225-233.
  • 6MENG Wei,LU Jia-kuan,LI Shi-rong.Finite groups with few non-cyclic subgroupsII[J].Algebra colloquium,to appear.
  • 7BRANDL R.Finite group with Few non-normal subgroups[J].Communications in Algebra.1995,23:2091-2098.
  • 8ROBERTO L H,AKBAR R.Group with a bounded of conjugate classes of non-normal subgroups[J].Journal of Algebra,1999,214:41-63.
  • 9李样明,王燕鸣.有限群的最大子群的性质对群结构的影响(英文)[J].数学进展,2007,36(5):599-606. 被引量:7
  • 10胡学瑞,李幸洋.覆盖避开性与幂零性[J].云南民族大学学报(自然科学版),2008,17(4):311-314. 被引量:2

共引文献5

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部