摘要
以魏尔施特拉斯理论为基础,基于正、余弦2种三角函数在周期性上的自相似性,通过函数项级数构造出了特殊高阶3种函数:处处连续而处处不可微函数、处处连续而处处非赫尔德连续函数、处处赫尔德连续而不更高阶连续函数,同时证明了这3种函数的相关性质.结果表明:例题证明所提出的构造方法切实有效.
Based on Weilstrass's theory,and the self similarity of sine function and cosine function in periodicity,three special higher-order functions are constructed through function series:everywhere all continuous and everywhere non-differentiable function,everywhere all continuous but not Herder continuous function,everywhere Herder continuous but not higher order continuous function.The related properties of these three functions are proved.An example shows that the construction method proposed in this paper is effective.
作者
孟宜成
MENG Yi-cheng(Finance and Mathematics School,Huainan Normal University,Huainan Anhui 232001,China)
出处
《兰州工业学院学报》
2021年第3期83-88,共6页
Journal of Lanzhou Institute of Technology
基金
安徽高校自然科学研究重点项目(KJ2018A0470)。
关键词
正弦函数
余弦函数
魏尔施特拉斯函数
赫尔德连续高阶连续函数
sine function
cosine function
Weierstrass function
Herder continuous higher-order continuous function