摘要
在2020年泸州市区域噪声分布特征的基础上,以聚类分析和相关分析为方法提取区域噪声监测点位相关信息,优化了泸州市建成区区域噪声监测点位,从152个监测点位中优选了22个作为区域噪声监测点位。优化区域噪声监测点位提高了噪声监测效率,为噪声自动监测站点位的选取提供了技术支撑;聚类分析和相关分析揭示了噪声监测点位间的相互关联信息;综合多元统计分析成果和区域噪声分布特征是合理、科学优化噪声监测点位的有效方法。
Based on the regional noise distribution characteristics of Luzhou City in 2020,cluster analysis and correlation analysis were used to extract the relevant information of regional noise monitoring points,and the noise monitoring points in the built-up area of Luzhou City were optimized,22 monitoring points were selected as regional noise monitoring points from 152 monitoring points.The optimization of regional noise monitoring points improves the efficiency of noise monitoring and provides technical support for the selection of automatic noise monitoring stations.Cluster analysis and correlation analysis reveal the correlation information among acoustic environment monitoring points.Comprehensive study of multivariate statistical analysis results and noise distribution characteristics is an effective method to rationally and scientifically optimize noise monitoring points.
作者
刘国安
杜涛
扈正权
伍丽娟
薛京州
LIU Guo-an;DU Tao;HU Zheng-quan;WU Li-juan;XUE Jing-zhou(Luzhou Ecological Environment Monitoring Center Station,Sichuan Province,Luzhou,Sichuan 616000,China)
出处
《四川环境》
2021年第3期132-137,共6页
Sichuan Environment
关键词
噪声分布特征
点位优化
聚类分析
相关分析
Nnoise distribution characteristics
point optimization
cluster analysis
correlation analysis