期刊文献+

一种基于几何形状特征的实时瞳孔定位追踪技术 被引量:5

A Real-Time Pupil Positioning and Tracking Technology Based on Geometric Shape Features
下载PDF
导出
摘要 在基于视觉的定位分析过程中,瞳孔作为重要的生理参数,易受鬓角、眉毛和光照强度等因素干扰,导致定位结果准确率不高,因此本文提出一种基于几何形状特征的实时瞳孔定位追踪技术.该技术方法结合两种不同定义的连通域外接矩形,通过面积阈值、角度差进行初步筛选,利用外接矩形长宽比进行二次筛选,最终实现瞳孔的精确定位.将该技术方法在5种不同数据集上进行准确性检测,定位结果的最高准确率提高到99.5%,平均误差减少到7.54%.由85名被试者在不同眼球注视情况下进行瞳孔实时定位追踪检测,结果表明该方法具有良好的鲁棒性,能够实现对瞳孔的实时追踪定位. In the process of vision-based positioning analysis,the pupil,as an important physiological parameter,is easily disturbed by such factors as sideburns,eyebrows and light intensity,resulting in low accuracy of positioning results.There-fore,a real-time pupil positioning and tracking technology based on geometric shape features is proposed in this study.This method combines two differently defined circumscribed rectangles of connected domains,conducts preliminary screening through area threshold and angle difference,and uses the circumscribed rectangle aspect ratio for secondary screening,which finally achieves the precise pupil positioning.The accuracy of the technical method was tested on five different data setswith the highest accuracy of the positioning results increased to 99.5%,and the average error reduced to 7.54%.Real-time detec-tion was performed by 85 subjects under different eye fixation conditions,and the results show that this method has good robustness and can realize real-time pupil tracking and positioning.
作者 陈静瑜 林丽媛 刘冠军 王颖 CHEN Jingyu;LIN Liyuan;LIU Guanjun;WANG Ying(College of Electronic Information and Automation,Tianjin University of Science&Technology,Tianjin 300222,China)
出处 《天津科技大学学报》 CAS 2021年第3期65-71,共7页 Journal of Tianjin University of Science & Technology
基金 天津市教委科研计划项目(2019KJ211)。
关键词 瞳孔定位 外接矩形 面积法 角度差 长宽比 pupil positioning circumscribed rectangle area threshold method angle difference aspect ratio
  • 相关文献

参考文献5

二级参考文献47

  • 1胡正平.基于多尺度-局部方向轮廓综合的鲁棒虹膜定位算法[J].电子学报,2007,35(1):131-134. 被引量:4
  • 2刘瑞安,靳世久,李文清,宋维,吴晓荣.瞳孔亚像素边缘检测与中心定位[J].计算机工程与应用,2007,43(5):200-203. 被引量:4
  • 3S A C Schuckers, N A Schmid, A Abhyankar, et al. On techniques for angle compensation in nonideal iris recognition[J].IEEE Trans on System, Man, and Cybernetics, 2007, 37 ( 5 ) : 1176- 1190.
  • 4Z Niu, S Shan, S Yan,X Chen, et al.2D cascaded adaBoost for eye localization[A ]. IEEE Int. Conf. on Pattern Recognition[C]. Hong Kong,2006.1216 - 1219.
  • 5R Halif, J Flusser. Numerically stable direct least squares fitring of ellipses[ A]. Proceedings of the 6th International Conference in Central Europe on Computer Graphics and Visualization[ C]. WSCG, 1998.125 - 132.
  • 6John Daugman. How iris recognition works[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14 (1) :21 - 30.
  • 7Frederick W Wheeler, A G Amitha Perera, et al. Stand-off iris recognition system [ A ]. Proc. of IEEE Second International Conference on Biometrics: Theory, Applications and Systems [ C]. Washington DC,2008.1 - 7.
  • 8James R Matey, Keith Hanna, et al. Iris on the move: Acquisition of images for iris recognition in less constrained environments [ J ]. Proceedings of the IEEE, 2006, 94 ( 11 ) : 1936 - 1947.
  • 9S J Pundlik,D L Woodard,S T Birchfield. Non-ideal iris segmentation using graph cuts [A] .IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops [C]. Alaska,2008.1 - 6.
  • 10Z 2]aou, Y Du, C Belcher. Transforming traditional iris recognition systems to work on non-ideal situations[J]. 1EEE Trans on Industry Electronics, 2009,56 (8) : 3203 - 3213.

共引文献57

同被引文献52

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部