期刊文献+

基于手机传感器数据识别交通方式中最佳时间窗口选取研究 被引量:1

Selection of the Best Time Window in the Travel Mode Based on Mobile Phone Sensor Data
原文传递
导出
摘要 为探究利用手机传感器数据提取交通方式时,对原始数据处理时选取不同的时间窗口长度对出行方式识别的影响,设计多种交通方式的组合出行试验,利用手机传感器采集软件采集真实出行数据,同步记录出行日志。经过数据预处理与出行特征分析,得到不同时间窗口下的特征参数,并利用支持向量机算法对出行方式进行识别。结果表明,出行方式整体识别准确率随时间窗口长度呈先增大后减小的趋势,在30s~50s之间的准确性较高,35s时的识别准确性最高,达到83.63%。其中,步行、自行车、公交车、小汽车四类交通方式准确率可到达90.48%、84.21%、80.98%、78.85%。结论为利用手机传感器识别交通方式的准确性提供时间窗口选择上的依据。 In this paper,in order to explore the influence of the length of the time window selected by the original data processing on the travel mode identification when using the mobile phone sensor data to identify the travel mode.The combined travel mode of various modes of transportation was designed,and the real-time travel data was collected by the mobile phone sensor acquisition software,and the travel log was recorded synchronously.After data preprocessing and travel feature analysis,the feature parameters under different time windows are obtained,and the travel mode is identified by the support vector machine algorithm.The results show that the overall recognition accuracy of travel mode increases first and then decreases with the length of time window.Between 30s and 50s,the accuracy is higher,and the recognition accuracy is the highest at 35s,reaching 83.63%.Among them,the accuracy of walking,bicycle,bus,and car transportation can reach 90.48%,84.21%,80.98%,and 78.85%when the accuracy rate is 35s.The conclusion is to provide support for time window selection by using mobile phone sensors to identify the accuracy of the traffic mode.
作者 陈旭 郑浩毅 段冉冉 马赛 CHEN Xu;ZHENG Haoyi;DUAN Ranran;MA Sai(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu,Sichuan 610031,China;Traffic and Urban Planning Research Institute,China Railway Eryuan Engineering Group Co.,Ltd,Chengdu,Sichuan 610031,China)
出处 《综合运输》 2021年第6期76-81,87,共7页 China Transportation Review
关键词 交通工程 手机传感器数据 最佳时间窗口 支持向量机 交通方式 Traffic engineering Cell phone sensor data Best time window length Support vector machine Travel modes
  • 相关文献

参考文献3

二级参考文献28

  • 1VAPNIK V N. The nature of statistical learning [M].Berlin:Springer, 1995.
  • 2VAPNIK V N. Statistical learning theory [M]. New York:John Wiley & Sons, 1998.
  • 3SCHōLKOPH B, SMOLA A J, BARTLETT P L. New support vector algorithms[J]. Neural Computation.2000, 12(5):1207--1245.
  • 4SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293--300.
  • 5CHEW H-G, BOGNER R E, LIM C-C, Dual v-support vector machine with error rate and training size beasing[A]. Proceedings of 2001 IEEE Int Conf on Acoustics,Speech, and Signal Processing [C]. Salt Lake City,USA: IEEE, 2001. 1269--1272.
  • 6LIN C-F, WANG S-D. Fuzzy support vector machines[J]. IEEE Trans on Neural Networks, 2002, 13(2):464--471.
  • 7SUYKENS J A K, BRANBANTER J D, LUKAS L, et al. Weighted least squares support vector machines:robustness and spare approximation[J]. Neuroeomputing, 2002, 48(1): 85--105.
  • 8ROOBAERT D. DirectSVM: A fast and simple support vector machine perception [A]. Proceedings of IEEE Signal Processing Society Workshop[C]. Sydney, Australia: IEEE, 2000. 356--365.
  • 9DOMENICONI C. GUNOPULOS D. Incremental support vector machine construction [A]. Proceedings of IEEE Int Conf on Data Mining[C]. San Jose, USA:IEEE,2001. 589--592.
  • 10OSUNA E, FREUND R, GIROSI F. An improved training algorithm for support vector machine [A].Proceedings of 1997 IEEE Workshop on Neural Networks for Signal Processing[C]. Amelea Island, FL:IEEE, 1997. 276--285.

共引文献149

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部