期刊文献+

基于端到端表情识别方法的课堂教学分析 被引量:6

Classroom teaching analysis based on end-to-end facial expression recognition
下载PDF
导出
摘要 为了更好地掌握及分析课堂教学情况,采用端到端的方法搭建了一种表情识别模型,用于评价学生的上课抬头率和活跃度等。模型使用Opencv库中的Haar特征分类器进行人脸检测,基于卷积神经网络方法进行表情识别。该卷积神经网络在Tensorflow框架下搭建,模型在输入层之后加入1*1的卷积核来保证输入的非线性,再使用逐渐减小的卷积核逐步提取更加精细的人脸表情特征,并将人脸划分为7种不同的表情,采用FER2013数据集进行训练。研究结果显示,此模型在FER2013数据集的测试集上取得了较好的识别率且网络参数和计算量均较小,便于实时检测。 In order to better grasp and analyze the classroom teaching situation,an end-to-end method is adopted to build an expression recognition model to evaluate students′head-up rate and activity in class.The model uses the Haar feature classifier in the Opencv library for face detection and facial expression recognition based on the convolutional neural network method.The network is built under the Tensorflow framework.The model adds a 1*1 convolution kernel after the input layer to ensure the nonlinearity of the input,and then uses the gradually reduced convolution kernel to extract more refined facial expression features step by step,and students′faces are divided into 7 different expressions,which are trained by the application of the FER2013 data set.This model has achieved a good recognition rate on the test set of the FER2013 data set,and has fewer network parameters and a small amount of calculation,which is more suitable for real-time detection.
作者 华春杰 于雅楠 李慧苹 刘航 HUA Chunjie;YU Yanan;LI Huiping;LIU Hang(School of Information Technology Engineering,Tianjin University of Technology and Education,Tianjin 300222,China;Personnel Department,Tianjin University of Traditional Chinese Medicine,Tianjin 301617,China)
出处 《天津职业技术师范大学学报》 2021年第2期26-31,共6页 Journal of Tianjin University of Technology and Education
基金 天津职业技术师范大学研究生创新基金资助项目(YC20-13).
关键词 卷积神经网络 表情识别 课堂教学 人脸识别 convolutional neural network(CNN) facial expression recognition classroom teaching face recognition
  • 相关文献

参考文献5

二级参考文献40

  • 1李洪修.人工智能背景下学校教育现代化的可能与实现[J].社会科学战线,2020(1):234-241. 被引量:15
  • 2Giovagnoni M. Dynamics of a flexible closed-chain manipulator[C]//ASME Design Technical Confer- ences, 1992: 19-25.
  • 3Wang X Y, Mills J K. Dynamic modeling of a flexi- ble-link planar parallel platform using a substructu- ring approach[J]. Mechanism and Machine Theory, 2006, 41(6): 671-687.
  • 4Zhou Z, Xi J, Mechefske C K. Modeling of a fully flexible 3PRS manipulator for vibration analsysis [J]. Journal of Mechanical Design, 2006, 128 (3): 403-412.
  • 5Zhang X, Mills J K, Cleghorn W L. Dynamic mod- eling and experimental validation of a 3-PRR parallel manipulator with flexible intermediate links [J]. Journal of Intelligent and Robotic Systems: Theory and Applications, 2007, 50(4): 323-340.
  • 6杜兆才,余跃庆,张绪平.平面柔性并联机器人动力学建模[J].机械工程学报,2007,43(9):96-101. 被引量:23
  • 7刘遵雄,马汝成.基于特征脸和LS-SVM分类器的人脸性别分类[J].华东交通大学学报,2007,24(5):85-88. 被引量:7
  • 8NIST. TREC video retrieval evaluation (TRECVID),2005-2007[Z].
  • 9Hauptmann A,Yan R,Lin W H. Can high-level concepts fill the semantic gap in video retrieval? A case study with broadcast news[J].IEEE Transactions on Multimedia,2007,(05):958-966.
  • 10Naphade M,Smith J R,Tesic J. Large-scale ontology for multimedia[J].IEEE Multimedia,2006,(03).

共引文献127

同被引文献36

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部