期刊文献+

激活函数的发展综述及其性质分析 被引量:49

Overview of the Development of Activation Function and Its Nature Analysis
下载PDF
导出
摘要 为深入研究激活函数的作用机制,探讨优良激活函数应具备的性质,以提高卷积神经网络模型的泛化能力,文章综述了激活函数的发展,分析得到优良激活函数应具备的性质。激活函数大体可分为“S型”激活函数、“ReLU型”激活函数、组合型激活函数、其他类型激活函数。在深度学习发展初期,“S型”激活函数得到了广泛应用。随着网络模型的加深,“S型”激活函数出现了“梯度消失”问题。ReLU激活函数的出现缓解了这一问题,但ReLU负半轴“置0”则引入了“神经元坏死”的问题。随后出现的改进激活函数大多基于ReLU负半轴进行改动,以缓减“神经元坏死”。文章最后以多层感知机为例,推导了优良激活函数在前向、反向传播中的作用,并得出其应该具备的性质。 In order to study the mechanism of the activation function in depth and discuss the properties of a good activation function to improve the generalization ability of the convolutional neural network model,the article reviews the development of the activation function and analyzes the properties that a good activation function should have.Activation functions can be roughly divided into"S-type"activation functions,"ReLU-type"activation functions,combined activation functions,and other types of activation functions.In the early stage of the development of deep learning,the"S-type"activation function has been widely used.With the deepening of the network model,it’s problem of"gradient disappearance"was found grandually.The emergence of the ReLU activation function alleviates this problem,but the negative half-axis of ReLU"set to 0"introduces the problem of"neuronal necrosis".Most of the subsequent improved activation functions were modified based on the negative semi-axis of ReLU to slow down"neuronal necrosis".At the end of the article,taking the multilayer perceptron as an example,the role of a good activation function in forward and backward propagation is deduced,and the properties that it should possess are derived.
作者 张焕 张庆 于纪言 ZHANG Huan;ZHANG Qing;YU Jiyan(National Defense Key Discipline Laboratory of Intelligent Ammunition Technology,School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094 China)
出处 《西华大学学报(自然科学版)》 CAS 2021年第4期1-10,共10页 Journal of Xihua University:Natural Science Edition
基金 国防科学技术预先研究基金项目(KO01071)。
关键词 深度学习 卷积神经网络 激活函数 反向传播 ReLU deep learning convolutional neural network activation function back propagation ReLU
  • 相关文献

参考文献9

二级参考文献86

  • 1王茜,董学仁,尉吉勇,马玉真.神经网络技术在智能传感器系统中的应用与发展[J].自动化仪表,2004,25(7):1-3. 被引量:2
  • 2李红霞.人工智能的发展综述[J].甘肃科技纵横,2007,36(5):17-18. 被引量:18
  • 3Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 4LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 5Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 6Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 7Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 8Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 9Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178.
  • 10Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001.

共引文献817

同被引文献438

引证文献49

二级引证文献73

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部