期刊文献+

基于HGDOB与RBFNN的回转支承试验台液压加载控制方法 被引量:2

Hydraulic Loading Control Method for Slewing Bearing Test Rig Based on HGDOB and RBFNN
下载PDF
导出
摘要 以回转支承试验台为研究对象,基于高增益扰动观测器(HGDOB)与径向基函数神经网络(RBFNN)提出了回转支承试验台液压加载控制方法。对控制对象——单出杆油缸与伺服阀进行数学建模,应用径向基函数神经网络对模型中油缸的非线性摩擦进行逼近,应用高增益扰动观测器对外部扰动和噪声进行观测,进而提高系统实际输出的加载力逼近期望输出的性能。通过Matlab/Simulink软件对所提出的回转支承试验台液压加载控制方法进行仿真分析,确认这一方法提高了控制器的动态跟踪与抗干扰能力,具有实用价值。 Taking the slewing bearing test rig as the research object,a hydraulic loading control method for the slewing bearing test rig was proposed based on HGDOB and RBFNN.Mathematical modeling of the control object single rod cylinder and servo valve was carried out,RBFNN was used to approximate the nonlinear friction of the cylinder in the model,HGDOB was used to observe external disturbances and noise,and then the performance that the actual output load force of the system close to the expected output was improved.Through Matlab/Simulink software,the proposed hydraulic loading control method for the slewing bearing test rig was simulated and analyzed.It is confirmed that this method improves the dynamic tracking and anti interference ability of the controller with practical value.
作者 都璐远 陈捷 杨贵超 Du Luyuan;Chen Jie;Yang Guichao
出处 《机械制造》 2021年第6期75-79,共5页 Machinery
基金 江苏省自然科学基金资助项目(编号:BK20130941)。
关键词 高增益扰动观测器 径向基函数神经网络 回转支承 液压加载 控制 HGDOB RBFNN Slewing Support Hydraulic Loading Control
  • 相关文献

参考文献2

二级参考文献16

  • 1杜睿,吴志军.单排球式回转支承的承载能力分析[J].机械设计与制造,2006(9):56-58. 被引量:28
  • 2张金萍,刘杰,张利国,李允公.基于RBF神经网络的工件模式识别[J].机械制造,2007,45(6):13-15. 被引量:1
  • 3Marciniec A, Torstenfelt B. Load Distribution in Flexibly Supported Three- row Roller Slew Bearings Tribology Transactions [J ]. Tribology Transactions, 1994,37 (4) : 757-762.
  • 4Kania L. Modelling of Rollers in Calculation of Slewing Bearing with the Use of Finite Elements [J]. Mechanism and Machine Theory, 2006, 41 (11 ) : 1359-1376.
  • 5Satyanarayana S, Melkote S N. Finite Element Modeling of Fixture- workpiece Contacts: Single Contact Modeling and Experimental Verification [J]. International Journal of Machine Tools and Manufacture, 2004,44 (9) : 903-913.
  • 6RUBIO J D J, YU W. A New Discrete-Time Sfiding-Mode Control with Time-varying Gain and Neural Identification [J].International Journal of Control, 2006, 79(4): 338-348.
  • 7BAYRAMOGLU H,KOMURCUGIL H. Nonsingular Deeo- upled Terminal Sliding-mode Control for a Class of Fourth- order Nonlinear Systems [J].Communieations In Nonlinear Science and Numerical Simulation, 2013,18 ( 9 ):2527-2539.
  • 8CHEN B, NIU Y G.,ZOU Y Y. Adaptive Sliding Mode Control for Stoehastie Markovian Jumping Systems with Actuator Degradation [J]. Automatiea, 2013,49 (6):1748- 1754.
  • 9WANG J, RAD A B, CHAN P T. Indriect Adaptive Fuzzy Sliding Mode Control: Part I:Fuzzy Switching [J].Fuzzy Sets and Systems,2001, 122(1 ):21-30.
  • 10郑兰疆,李彦,赵武,杨丕珠.大型回转轴承的承载性能分析[J].机械设计与研究,2008,24(2):82-86. 被引量:15

共引文献15

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部