期刊文献+

基于LMD与改进SVM的轴承故障诊断方法 被引量:7

Bearing Fault Diagnosis Method Based on LMD and Improved SVM
下载PDF
导出
摘要 针对轴承振动信号故障特征信息实际提取困难的问题,基于局部均值分解(LMD)与改进支持向量机(SVM)提出了轴承故障诊断方法。对所采集的轴承振动信号进行局部均值分解,得到若干乘积函数的分量。计算各乘积函数的能量,选取能量百分比值作为识别故障的特征值。针对支持向量机不能自适应选择核函数参数和惩罚因子的问题,利用细菌觅食优化算法对支持向量机进行参数优化。将特征值输入改进支持向量机模型,对轴承故障状态进行识别。试验结果表明,相对于传统支持向量机模型和隐马尔可夫模型,采用所提出的轴承故障诊断方法,对轴承故障的识别准确率提高7个百分点以上,由此验证了所提出的轴承故障诊断方法的可靠性。 Aiming at the issue of difficulty in extracting fault signature information of bearing vibration signal,a bearing fault diagnosis method was proposed based on LMD and improved SVM.LMD on the collected bearing vibration signals is conducted to obtain the components of several product functions.The energy of each product function is calculated and the energy percentage value is selected as the characteristic value for identifying the fault.Aiming at the problem that SVM cannot adaptively select the kernel function parameters and the penalty factor,the bacterial foraging optimization algorithm is used to optimize the parameters of SVM.The characteristic values are input to improved SVM model to identify the fault state of the bearing.The test results show that,compared with traditional SVM model and hidden Markov model,the proposed bearing fault diagnosis method can improve the identification accuracy of bearing fault by more than 7 percentage points,thus verifying the reliability of the proposed bearing fault diagnosis method.
作者 李道军 李廷锋 刘德平 Li Daojun;Li Tingfeng;Liu Deping
出处 《机械制造》 2021年第6期84-88,共5页 Machinery
基金 河南省科技厅科技攻关项目(编号:212102210337)。
关键词 局部均值分解 支持向量机 轴承 故障 诊断 LMD SVM Bearing Fault Diagnostics
  • 相关文献

参考文献6

二级参考文献66

  • 1程军圣,于德介,杨宇.基于EMD的能量算子解调方法及其在机械故障诊断中的应用[J].机械工程学报,2004,40(8):115-118. 被引量:85
  • 2季忠,金涛,杨炯明,秦树人.基于独立分量分析的消噪方法在旋转机械特征提取中的应用[J].中国机械工程,2005,16(1):50-53. 被引量:23
  • 3金晶,王行愚,罗先国,王蓓.PSO-ε-SVM的回归算法[J].华东理工大学学报(自然科学版),2006,32(7):872-875. 被引量:8
  • 4Baydar N, Ball A. Detection of gear failures via vibration and acoustics signals using wavelet transform [ J ]. Mechanical Systems and Signal Processing, 2003, 17(4) : 787 -804.
  • 5Zheng H, Li Z, Chen X. Gear fault diagnosis based on continuous wavelet transform[ J]. Mechanical Systems and Signal Processing, 2002, 16(2 -3) : 447 -457.
  • 6Classen T, Mecklenbrauker W. The aliasing problem in discrete-time Wigner distribution[ J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1983, 31 (5) : 1067 - 1072.
  • 7Lee J H, Kim J, Kim H J. Development of enhanced Wigner- Ville distribution function [ J ]. Mechanical Systems and Signal Processing, 2001, 13 (2) : 367 - 398.
  • 8Cohen L. Time-frequency distribution-a review [ A ]. Proceedings of the IEEE, 1989, 77(7) : 941 -981.
  • 9Mallat S. A theory for multi-resolution decomposition, the wavelet representation [ J]. IEEE Trans. P. A. M. I. , 1989, 11(7) :674 -689.
  • 10Huang N E, Shen Z, Long S R, et al. The Empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. R. Soc. Lond. A, 1998, 454:903-995.

共引文献112

同被引文献58

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部