期刊文献+

基于生成对抗网络的交通模糊图像复原 被引量:3

Restoration of traffic blurred images based on improved GAN
下载PDF
导出
摘要 针对光线及车辆运动造成的交通图像模糊和分辨率低等问题,提出一种基于生成对抗网络(GAN)的图像复原方法。在生成器中加入ResNeXt残差块,提高模型的去模糊效果,并使用对抗损失和感知损失保证图像内容的一致性;以DiscoGAN为基础,构建2个GAN对非成对图像进行正向循环和反向循环,实现了模糊域到清晰域的相互转换。实验结果表明,该模型应用在GoPro数据集上结构相似性(SSIM)和峰值信噪比(PSNR)比其他同类去模糊模型平均提高了8.3%和15.1%,在桂林市交通数据集上测试展现出较好的迁移能力及泛化能力。 Due to weather changes and vehicle movement,the images captured by the intelligent monitoring system are blurred.Aiming at the problems of blurred traffic images and low resolution caused by light and vehicle movement,an image restoration method based on Generative Adversarial Network is proposed.Add the ResNeXt block to the generator to improve the deblurring effect of the model,and use the confrontation loss and the perceptual loss to ensure the consistency of the image content.Based on DiscoGAN,two GANs are constructed to carry out the forward loop and the unpaired image The reverse cycle realizes the mutual conversion from the fuzzy domain to the clear domain.The experimental results show that the structural similarity(SSIM)and peak signal-to-noise ratio(PSNR)data of this model applied to the GoPro data set are improved by an average of 8.3%and 15.1%compared with other similar deblurring models.The test shows on the Guilin city traffic data set.A better migration ability and generalization ability have been developed to provide practical significance and technical support for the intelligent transportation system.
作者 陈慧雅 伍锡如 CHEN Huiya;WU Xiru(School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China)
出处 《桂林电子科技大学学报》 2021年第2期167-172,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(61863007,61603107) 广西自然科学基金(2020GXNSFDA238029)。
关键词 生成对抗网络 残差网络 模糊复原 智能交通系统 交通模糊图像 generative adversarial network residual network blind image restoration intelligent transportation traffic blur image
  • 相关文献

参考文献11

二级参考文献82

  • 1仲伟波,宁书年,金声震.一种基于NAS-RIF的SST图像盲恢复新方法[J].中国矿业大学学报,2006,35(5):679-683. 被引量:2
  • 2KUNDUR D. Blind deconvolution of still images u sing recursive inverse filtering [D]. M. A. Sc. the sis, University of Toronto, Department of Electri cal and Computer Engineering, 1995.
  • 3YU-LI Y, KAVEH M. A regularization approach to ioint blur identification and image restoration [C]. IEEE Transactions on Image Processing,1996, 5(3): 416-428.
  • 4REGINALD L L, JAN B, DICK E B. Regularized iterative image restoration with ringing reduction [C]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36 (12): 1874- 1888.
  • 5RAFAEL C. G, RICHARD E W. Digital Image Processing[M]. 3rd ed. Prentice Hall, 2007.
  • 6BANHAM M R, KATSAGGELOS A K. Digital image restoration [C]. IEEE Signal Processing Magazine, 1997, 14(2): 24-41.
  • 7Tail R T. Visibility in bad weather from a single image. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 8Fattal R. Single image dehazing. ACM Transactions on Graphics, 2008, 27(3): Article No. 72.
  • 9He K M, Sun J, Tang X O. Single image haze removal us- ing dark channel prior. In: Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami. USA: IEEE, 2009. 1956-1963.
  • 10Tarel J P, Hautiere N. Fast visibility restoration from a sin- gle color or gray level image. In: Proceedings of the 12th IEEE International Conference oil Computer Vision. Kyoto, USA: IEEE. 2009. 2201-2208.

共引文献271

同被引文献33

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部