摘要
极小Frobenius范数双对称解求解一类矩阵方程的过程中,容易受到中心对称性影响,求解较慢.设定一类矩阵方程中心对称约束条件,将其作为迭代求解过程的基础,将矩阵方程转化为方程组的形式,设定相应的迭代求解方法,迭代得到的数据解可视作矩阵方程组的极小Frobenius范数广义双对称解,构建逼近方法完成求解计算过程.构建对比实验环节,此方法的计算速度得到提升,且使用效果更为有效.
The process of solving a class of matrix equations with minimal Frobenius parametric dual symmetry is susceptible to the influence of central symmetry and slow in solving.The methods of setting a class of matrix equations centrosymmetry constraints,using it as the basis of the iterative solution process,transforming the matrix equations into the form of a system of equations,and setting the corresponding iterative solution method are moreefficient The data solution obtained by iteration can be regarded as the minimal Frobenius parametric generalized bisymmetric solution of the system of matrix equations,and construct the approximation method to complete the solution calculation process.A comparative experimental session is constructed and the computational speed of this method is improved and it is used more effectively.
作者
张峰
ZHANG Feng(Department of Navigation,Anhui Communications Vocational and Technical College,Hefei Anhui 230051,China)
出处
《曲靖师范学院学报》
2021年第3期5-10,共6页
Journal of Qujing Normal University
基金
2020年度高校优秀青年骨干教师国内访问研修(gxgnfx2020169)。
关键词
矩阵方程
最小二乘解
最佳逼近
迭代计算
matrix equations
least squares solutions
best approximation
iterative computation