期刊文献+

三相碳改性磷酸铁锂复合材料的制备及其电化学性能研究 被引量:5

Preparation and Electrochemical Performance of Three-Phase Carbon Modified Lithium Iron Phosphate Composite
下载PDF
导出
摘要 以磷酸铁、碳酸锂为原材料,葡萄糖、碳纳米管和石墨烯为导电剂,通过砂磨工艺及碳热还原法制备了高性能磷酸铁锂、无定型碳、石墨烯、碳纳米管复合正极材料LFP/C/G/CNTs。材料表征结果表明,碳纳米管、石墨烯和无定形碳与磷酸铁锂复合在一起,成功构建了高速电子传输网络;电化学性能测试表明,LFP/C/G/CNTs具有良好的循环性能和倍率性能。在0.1C电流密度下,LFP/C/G/CNTs放电比容量为161.5 mAh/g;在5C电流密度下,LFP/C/G/CNTs复合材料放电比容量仍达126.5 mAh/g;在2C电流密度下,循环200次后,LFP/C/G/CNTs放电比容量152.1 mAh/g,容量保持率为99.6%。 The LFP/C/G/CNTs,a high-performance composite cathode material of lithium iron phosphate(LFP),amorphous carbon,graphene and carbon nanotube,was prepared by using the sand milling process and carbon thermal reduction method,with iron phosphate and lithium carbonate as raw materials,and glucose,carbon nanotubes(CNTs)and graphene as conductive agents.The characterization results indicate that CNTs,graphene,and amorphous carbon are well combined with LFP,thereby successfully constructing a high-speed electron transmission network.The electrochemical performance test shows that the LFP/C/G/CNTs can exhibit good cycling performance and rate performance.It can deliver a specific discharge capacity of 161.5 mAh/g at a current density of 0.1C,and 126.5 mAh/g at 5C.After 200 cycles at the current density of 2C,it can still deliver a specific discharge capacity of 152.1 mAh/g,with the capacity retention rate of 99.6%.
作者 吴军 郑锋华 文春海 谭春雷 王红强 李庆余 WU Jun;ZHENG Feng-hua;WEN Chun-hai;TAN Chun-lei;WANG Hong-qiang;LI Qing-yu(Guangxi Research Center of New Energy Ship Battery Engineering Technology,Guilin 541004,Guangxi,China;Guilin Wuzhou Tourism Co Ltd,Guilin 541004,Guangxi,China;School of Chemical and Pharmaceutical Science,Guangxi Normal University,Guilin 541004,Guangxi,China)
出处 《矿冶工程》 CAS CSCD 北大核心 2021年第3期138-142,共5页 Mining and Metallurgical Engineering
基金 广西创新驱动发展专项项目(桂科AA18118005) 国家自然科学基金(51762006)。
关键词 锂离子电池 正极材料 磷酸铁锂 石墨烯 碳纳米管 无定形碳 LFP/C/G/CNTs 改性 砂磨法 碳热还原 lithium-ion battery cathode material lithium iron phosphate(LFP) graphene carbon nanotubes(CNTs) amorphous carbon LFP/C/G/CNTs modified property sand milling method carbon thermal reduction
  • 相关文献

参考文献4

二级参考文献231

  • 1Goodenough, J. B. Evolution of strategies for modem rechargeable batteries. Acc. Chem. Res. 2013, 46, 1053 1061.
  • 2Aric6, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.-M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.
  • 3Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160-2181.
  • 4Chen, H. S.; Cong, T. N.; Yang, W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Progress in electrical energy storage system: A critical review. Prog. Nat. Sci. 2009, 19, 291 312.
  • 5Tarascon, J.-M.; Armand, M rechargeable lithium batteries Issues and challenges facing Nature 2001, 414, 359 367.
  • 6Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930-2946.
  • 7Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451,652557.
  • 8Chen, X. B.; Li, C.; Gritzel, M.; Kostecki, R.; Mao, S. S. Nanomaterials for renewable energy production and storage Chem. Soc. Rev. 2012, 41, 7909 7937.
  • 9Kang, K.; Meng, Y. S.; Brdger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311,977-980.
  • 10Mai, L. Q; Tian, X. C.; Xu, X.; Chang, L.; Xu, L. Nanowire electrodes for electrochemical energy storage devices. Chem. Rev. 2014, 114, 11828 11862.

共引文献25

同被引文献45

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部